ru

новости еды

радиоc

Electromagnetic Radiation Safety

Electromagnetic Radiation Safety
3.4.2024 23:44

Recent Research on Wireless Radiation and Electromagnetic Fields


I have been circulating abstracts of newly-published scientific papers on radio frequency and other non-ionizing electromagnetic fields (EMF) monthly since 2016. The complete collection contains more than 2000 abstracts with links to these papers. Several hundred EMF scientists around the world receive these updates.
To download Volume 3 which contains abstracts of papers published in 2024 (including the new papers listed below) click on the following link (72 page pdf):https://bit.ly/EMFstudies04-2024
To download Volume 2 which contains abstracts of papers published from 2021 through 2023 click on the following link (867 page pdf):https://bit.ly/EMFStudies-2021-2023
To download Volume 1 which contains abstracts of papers published from 2016 through 2020 click on the following link (875 page pdf):https://bit.ly/EMFStudies-2016-2020
The abstracts for recently published papers appear below.

Invited Perspective: Why Systematic Reviews, Scoping Reviews, and Evidence-to-Decision Frameworks Are Critical for Transparent, Consistent, Equitable, and Science-Based Decision-Making in Environmental Health
My note: Systematic reviews require a multitude of macro- and micro-decisions. When conducted by biased investigative teams, systematic reviews generate erroneous conclusions and policy implications. This applies to toxic EMF as well as chemical exposures.

Chartres N, Joglekar R. Invited Perspective: Why Systematic Reviews, Scoping Reviews, and Evidence-to-Decision Frameworks Are Critical for Transparent, Consistent, Equitable, and Science-Based Decision-Making in Environmental Health. Environ Health Perspect. 2024 Mar;132(3):31304. doi: 10.1289/EHP14346.
No abstract
"... systematic review is simultaneously being corrupted as agencies, including the Texas Commission on Environmental Quality (TCEQ) and the US Environmental Protection Agency (EPA), as part of implementing the amended the Toxic Substances Control Act, are appropriating the term in regulatory decision-making without meeting many of the standards of an empirically based systematic review. 4,9–12 This could result in rulemakings that underestimate the true risk of harm posed by toxic chemical exposures, which could have devastating implications for vulnerable populations, including low-wealth communities of color. 11"

Open access paper: https://ehp.niehs.nih.gov/doi/10.1289/EHP14346
--
Mobile phone use and brain tumour risk – COSMOS, a prospective cohort study
(Note: Methodological problems undermine validity of results.)
Feychting M, Schüz J, Toledano MB, Vermeulen R, Auvinen A, Poulsen AH, Deltour I, Smith RB, Heller J, Kromhout H, Huss A, Johansen C, Tettamanti G, Elliott P. Mobile phone use and brain tumour risk – COSMOS, a prospective cohort study. Environment International. 2024, doi: 10.1016/j.envint.2024.108552.
Abstract
Background: Each new generation of mobile phone technology has triggered discussions about potential carcinogenicity from exposure to radiofrequency electromagnetic fields (RF-EMF). Available evidence has been insufficient to conclude about long-term and heavy mobile phone use, limited by differential recall and selection bias, or crude exposure assessment. The Cohort Study on Mobile Phones and Health (COSMOS) was specifically designed to overcome these shortcomings.

Methods: We recruited participants in Denmark, Finland, the Netherlands, Sweden, and the UK 2007-2012. The baseline questionnaire assessed lifetime history of mobile phone use. Participants were followed through population-based cancer registers to identify glioma, meningioma, and acoustic neuroma cases during follow-up. Non-differential exposure misclassification was reduced by adjusting estimates of mobile phone call-time through regression calibration methods based on self-reported data and objective operator-recorded information at baseline. Hazard ratios (HR) and 95% confidence intervals (CI) for glioma, meningioma, and acoustic neuroma in relation to lifetime history of mobile phone use were estimated with Cox regression models with attained age as the underlying time-scale, adjusted for country, sex, educational level, and marital status.

Results: 264,574 participants accrued 1,836,479 person-years. During a median follow-up of 7.12 years, 149 glioma, 89 meningioma, and 29 incident cases of acoustic neuroma were diagnosed. The adjusted HR per 100 regression-calibrated cumulative hours of mobile phone call-time was 1.00 (95 % CI 0.98-1.02) for glioma, 1.01 (95 % CI 0.96-1.06) for meningioma, and 1.02 (95 % CI 0.99-1.06) for acoustic neuroma. For glioma, the HR for ≥ 1908 regression-calibrated cumulative hours (90th percentile cut-point) was 1.07 (95 % CI 0.62-1.86). Over 15 years of mobile phone use was not associated with an increased tumour risk; for glioma the HR was 0.97 (95 % CI 0.62-1.52).

Conclusions: Our findings suggest that the cumulative amount of mobile phone use is not associated with the risk of developing glioma, meningioma, or acoustic neuroma.
Open access paper: https://www.sciencedirect.com/science/article/pii/S0160412024001387
Supplementary material: https://www.sciencedirect.com/science/article/pii/S0160412024001387#s0065
--

Dominance of Smartphone Exposure in 5G Mobile Networks

Chiaraviglio L, Lodovisi C, Bartoletti S, Elzanaty A, M. Slim-Alouini M. Dominance of Smartphone Exposure in 5G Mobile Networks. IEEE Transactions on Mobile Computing, 23(3):2284-2302, 2024. doi: 10.1109/TMC.2023.3252662.

Abstract
The deployment of 5G networks is sometimes questioned due to the impact of ElectroMagnetic Field (EMF) generated by Radio Base Station (RBS) on users. The goal of this work is to analyze such issue from a novel perspective, by comparing RBS EMF against exposure generated by 5G smartphones in commercial deployments. The measurement of exposure from 5G is hampered by several implementation aspects, such as dual connectivity between 4G and 5G, spectrum fragmentation, and carrier aggregation. To face such issues, we deploy a novel framework, called 5G-EA, tailored to the assessment of smartphone and RBS exposure through an innovative measurement algorithm, able to remotely control a programmable spectrum analyzer. Results, obtained in both outdoor and indoor locations, reveal that smartphone exposure (upon generation of uplink traffic) dominates over the RBS one. Moreover, Line-of-Sight locations experience a reduction of around one order of magnitude on the overall exposure compared to Non-Line-of-Sight ones. In addition, 5G exposure always represents a small share (up to 38%) compared to the total one radiated by the smartphone.
Excerpt
Our results demonstrate that the smartphone exposure dominates over the RBS one upon generation of UL traffic, especially when the UE is in Non-Line-of-Sight (NLOS) with respect to the RBS. On the contrary, both smartphone exposure and total EMF are reduced up to one order of magnitude when the smartphone UL traffic traverses a radio link in Line-of-Sight (LOS) with respect to the serving RBS. Interestingly, the exploitation of dual connectivity feature between 4G and 5G reveals that only a small smartphone exposure share (at most equal to 38%) is due to 5G, while the largest exposure levels are derived from the carrier aggregation over 4G bands. Moreover, both total and smartphone exposure-per-bit metrics are inversely proportional to the maximum amount of UL traffic generated by the smartphone in the measurement location, thus suggesting that innovative exposure estimators, based on the reporting of maximum UL traffic from the smartphone, can be designed.
Open access paper: https://doi.ieeecomputersociety.org/10.1109/TMC.2023.3252662
--

Human exposure to EMF from 5G base stations: analysis, evaluation and comparison of different assessment methods
Expósito I, Hakizimali C, García Sánchez M, Cuiñas I, Verhaevert J. Human exposure to EMF from 5G base stations: analysis, evaluation and comparison of different assessment methods. Measurement. 2024. doi: 10.1016/j.measurement.2024.114434.

Highlights
  • This paper analyzes the feasibility of assessing the 5G base stations compliance using broadband field probes and compares their performance with alternative methodologies and equipment.
  • Performance of three different methodologies and equipment (broadband probes, spectrum analyzers, and drive test scanners), in the context of human exposure to electromagnetic fields (EMF) from 5G base stations, is compared.
  • Quantification of the uncertainty that the fluctuation in 5G signal levels induces in the assessment of electromagnetic fields exposure is provided.
  • The use of broadband field probes for 5G exposure assessment is still possible under certain considerations and correcting the results considering the base station load and beamforming effects.
Abstract

5G networks deployment poses new challenges when evaluating human exposure to electromagnetic fields. Fast variation of the user load and beamforming techniques may cause large fluctuations of 5G base stations field level. They may be underestimated, resulting in compliance of base stations not fitting the requirements. Apparently, broadband field meters would not be adequate for measuring such environments. However, we analyze the feasibility of confidently using broadband field meters and compare their performance with alternative equipment. Measurements based on the synchronization signals power level, using spectrum analyzers or drive test scanners, may be valid, if gain differences between the signaling and data radiation patterns are characterized. These methods lead to good results but require more time and knowledge. Nevertheless, using broadband field meters is still possible if the measurement results are corrected considering the base station load. Under specific conditions, explained here, fast assessment of 5G compliance could be provided.

Conclusions

Assessing human exposure to an electromagnetic field in presence of a 5G base station is not an easy task. The implementation of M−MIMO techniques in 5G base stations results in adaptive beamforming. This makes difficult to guarantee that the field levels are at their maximum at the measurement location during the complete measurement period, which would limit the applicability of broadband instruments as having been done for previous generations. In this research, we have compared different methods for 5G exposure assessment, using a broadband field meter with an isotropic probe, a spectrum analyzer and a drive test scanner.

Along the paper, we first give an overview of the 5G signal structure, describing the frequency domain and time domain specifications. Afterwards, possible assessment methods are described. The SSB level is measured using the Keysight FieldFox N9913A SA and the Rohde & Schwarz TSM6 DTS. The values are extrapolated to the worst-case exposure and compared to the measurements done with the Wavecontrol WPF8 broadband field probe. Measurements are repeated increasing the base station load by performing a heavy download from a 5G user terminal located near the testers.

The proposed methods were field tested at the University of Vigo, Spain, with a commercial 5G base station located on its campus. The measurements were performed at 7 locations in LOS conditions around the base station, gathering data with the three different equipment at the same locations and at the same time. This data collection allows the comparison of the three methodologies under the same radiating conditions.

All results have been analyzed considering the specific measurement uncertainties, which allows a deeper and more precise comparison among them.

From the measurement results, we can extract that the exposure levels are low at this stage of the 5G deployment. When loading the base station, the results showed that using the broadband field meter can overestimate the field level. Thus, it is still a useful method to check if the field levels comply with the regulation in human exposure; very simple and cost-effective compared with others. In-situ measurements of human exposure to EMF have to be practical and easy to carry, involving only the resources and equipment strictly necessary, but without compromising the validity of the results. When the reference levels are surpassed, more accurate methods based in the assessment and extrapolation of the SSB level could be a solution. The drawback is the required post processing, specially correcting the gain difference between SSB and data signals. If not provided by the network operator, this difference can be determined through measurements, as explained along this document. Measuring with an SA in max-hold mode in the bandwidth of the SSB does not work in 5G as it does in LTE, as we cannot be sure if the measured level corresponds to the SSB or to the user data, no matter if we are forcing the load of the station or not.

The analysis of the results demonstrate that broadband instruments can be used for assessing human exposure to EMF in the vicinity of 5G base stations, which radiating elements provide fields with extreme fluctuations in their intensity as a function of the system load and beamforming configuration. This is accurate when measurements are done by forcing an extra load of the station and the pointing of an antenna beam towards the probe. The validation of this fast method as a first attempt to assess the compliance of 5G stations permits the testing of these base stations in an efficient way. Only when broadband instrument results (including their uncertainties) would overpass the reference levels, a more detailed analysis would be necessary, which procedure and tips are also depicted along this paper.

Open access paper: https://www.sciencedirect.com/science/article/pii/S0263224124003191
--
5G NR launching in Greece: Preliminary in situ and monitoring network measurements of electromagnetic fields exposure levels at rooftops
Christopoulou MI, Kyritsi T, Yalofas A, Koutounidis D, Karabetsos E. 5G NR launching in Greece: Preliminary in situ and monitoring network measurements of electromagnetic fields exposure levels at rooftops. Bioelectromagnetics. 2024 Mar 5. doi: 10.1002/bem.22502.

Highlights

  • In situ measurements of electromagnetic field (EMF) exposure levels at rooftops, close to 117 base stations operating at 5G FR1 in Greece in order to evaluate the contribution of 5G to the total exposure.

  • Statistical analysis of the follow-up for inspections of the same base stations, before and after the 5G FR1 launching in Greece.

  • Case study of a 5G FR1 base station during its pilot and regular operation based on in situ and broadband & frequency selective 24/7 monitoring sensors measurements data.

Abstract

In Greece, 5G New Radio (NR) has started launching in the end of 2020, at the 3400-3800 MHz (FR1) frequency band. Focusing on 117 Base Stations (BSs) which were already equipped with 5G NR antennas, in situ broadband and frequency selective measurements have been conducted at minimum three points of interest, at adjacent rooftops (when accessible). The points have been selected according to the sweeping method and the electric field strength (E) value has been stored on the selected worst-case scenario point. Spectrum analysis was conducted in the FR1, for the allocated spectrum that corresponds to each mobile communication provider, in order to get preliminary results concerning the contribution of the 5G NR emissions in the general public exposure levels. The vast majority of the in situ measurements has been conducted in urban environments from the beginning of 2021 until the mid of 2022, since in Greece 5G NR services launching started from the big cities. Additionally, a 5G NR BS, installed in a suburban environment (in the city of Kalamata) is thoroughly investigated during its pilot and regular operation, based on broadband and frequency selective measurements data derived by the National Observatory of Electromagnetic Fields (NOEF) monitoring sensor network. In situ measurement data within the 5G NR frequency range are verified via the NOEF's output. The 5G NR contribution to the total E-field levels is assessed in time, from pilot to regular operation of the BS. In all cases, compliance with the reference levels for general public exposure is affirmed.

https://pubmed.ncbi.nlm.nih.gov/38444067/
--
The determinants of legislation for radiofrequency electromagnetic fields (RF-EMFs) with the onset of 5G: An empirical analysis

Recuero Virto L, Czerwiński M, Froidevaux J. The determinants of legislation for radiofrequency electromagnetic fields (RF-EMFs) with the onset of 5G: An empirical analysis with a worldwide cross-sectional dataset. Risk Anal. 2024 Mar 31. doi: 10.1111/risa.14298.

Abstract

The unprecedented exposure of radiofrequency electromagnetic field (RF-EMF) to humans from mobile communications raises serious public concern about the possibility of unexpected adverse health effects and has stimulated authorities to adopt precautionary exposure limits. These limits are distinctly different across countries, and the causes of these differences are unclear from the literature. This article is the first empirical analysis on the determinants of RF-EMF exposure legislation, using a novel cross-sectional database of 164 countries worldwide. The analysis shows that decentralization and mobile competition in countries with low mobile network deployment tend to promote more stringent RF-EMF exposure limits across the dataset with 164 countries. In more decentralized countries, the regions had a greater influence on national legislation and could accommodate local demands with the advent of mobile technology in the 2000s. In contrast, decentralization and mobile competition in countries with high levels of mobile network deployment tend to relax RF-EMF exposure limits in the sample of 61 countries with fifth-generation (5G) technology. Indeed, restrictive RF-EMF exposure limits are constraining 5G deployment in a context of the widespread adoption of mobile-broadband technologies. These results should be useful for policymakers and mobile operators alike to anticipate the outcome of legislation in countries that have yet to introduce 5G technology. The results should also be useful when reviewing policies and strategies for the implementation of the upcoming 6G technology in frequency bands that will be increasingly higher (above 6 GHz up to THz for very local usage), and hence where the health effects on humans are less well studied.

https://pubmed.ncbi.nlm.nih.gov/38556257/

--

Editorial: Neurological Illness and National Security: Lessons to Be Learned

Relman DA. Neurological Illness and National Security: Lessons to Be Learned. JAMA. Published online March 18, 2024. doi:10.1001/jama.2023.26818

No abstract

Excerpt
In 2016, a set of troubling neurological symptoms was reported through confidential channels by US government personnel based at the US Embassy in Havana, Cuba. As the number of cases in Havana escalated and then similar cases occurred over the next 5 years in other locations around the globe, efforts to understand this syndrome, now known as anomalous health incidents (AHIs), were hampered by their unusual features, incomplete information, nonstandardized clinical testing, delayed reporting, and the sensitive nature of the circumstances, individuals, and their work. A subset of individuals described the abrupt onset, sometimes in the middle of the night, of a loud, grinding, clicking, buzzing, or high-pitched piercing sound inside the head, occasionally likened to a slide whistle, and a sensation of pressure, sometimes in one ear, on one side of the head, or in the face or chest. Most strikingly, these phenomena often displayed strong location dependence, in that they quickly dissipated when the individuals vacated their initial location, and then returned when the location was revisited. In some cases, this location dependence was reported to occur repeatedly by the same individual or by multiple individuals as they moved away from and then returned within minutes to a specific location, such as part of a room. These abrupt-onset sensory phenomena were followed by a mix of vertigo, dizziness, imbalance, blurry vision, tinnitus, headache, nausea, and cognitive dysfunction, sometimes leading to chronic disability.
In this issue of JAMA, Chan et al1 and Pierpaoli et al2 at the National Institutes of Health (NIH) report on an extensive clinical assessment of 86 participants with AHIs and 30 control participants, and on magnetic resonance imaging (MRI) findings of 81 of these participants with AHIs and 48 control participants, respectively. Overall, the authors found few significant differences between participants with AHIs and control participants, and no consistent evidence of brain injury. These findings differ from previous clinical and imaging studies of smaller numbers of cases from Havana and China that found evidence of vestibular, oculomotor, and pupillary abnormalities3,4 and a variety of MRI findings.5
With few differences between cases and controls in the 2 current studies, one might suspect that nothing or nothing serious happened with these cases. This would be ill-advised. Two detailed investigations of AHIs (in which I played a role) found the cases with abrupt-onset, location-dependent sensory phenomena to be unlike any disorder reported in the neurological or general medical literature, and potentially caused by an external mechanism.6-9 The first of these investigations was undertaken by the US National Academy of Sciences in 2019-2020 and the second by a panel of experts on behalf of the US Intelligence Community in 2021-2022. The latter is described in more detail below. Both of these investigations involved experienced clinicians, detailed interviews with many affected individuals, careful reviews of the literature, and informal reviews of some medical records, but not physical examinations or directed testing. After considering a wide variety of possible mechanisms, both studies concluded that some of the cases with abrupt-onset, location-dependent sensory phenomena could be plausibly explained by exposure to directed, pulsed radiofrequency energy, despite important uncertainties. Others have also pointed to pulsed radiofrequency energy as a plausible mechanism.10,11 The US Intelligence Community has discounted this possibility and concluded that reported symptoms were probably the result of "preexisting conditions, conventional illnesses, and environmental factors," influenced by their assessment that no foreign adversary played a role in these cases.12 While many cases may be explained in this fashion, the evidence that might favor known conditions, illnesses, and factors in some of the cases with abrupt-onset, location-dependent auditory-vestibular phenomena is weak at best....

Open access paper: https://jamanetwork.com/journals/jama/fullarticle/2816534

--

Clinical, biomarker, and research tests among US government personnel and their family members involved in anomalous health incidents

Chan L, Hallett M, Zalewski CK, et al; NIH AHI Intramural Research Program Team. Clinical, biomarker, and research tests among US government personnel and their family members involved in anomalous health incidents.  JAMA. Published March 18, 2024. doi:10.1001/jama.2024.2413

Key Points

Questions Do US government officials and their family members involved in anomalous health incidents (AHIs) differ from control participants with respect to clinical, biomarker, and research assessments?

Findings In this exploratory study that included 86 participants reporting AHIs and 30 vocationally matched control participants, there were no significant differences in most tests of auditory, vestibular, cognitive, visual function, or blood biomarkers between the groups. Participants with AHIs performed significantly worse on self-reported and objective measures of balance, and had significantly increased symptoms of fatigue, posttraumatic stress disorder, and depression compared with the control participants; 24 participants (28%) with AHIs presented with functional neurological disorders.

Meaning In this exploratory study, there were no significant differences between individuals reporting AHIs and matched control participants with respect to most clinical, research, and biomarker measures, except for self-reported and objective measures of imbalance; symptoms of fatigue, posttraumatic stress, and depression; and the development of functional neurological disorders in some.

Abstract

Importance Since 2015, US government and related personnel have reported dizziness, pain, visual problems, and cognitive dysfunction after experiencing intrusive sounds and head pressure. The US government has labeled these anomalous health incidents (AHIs).

Objective To assess whether participants with AHIs differ significantly from US government control participants with respect to clinical, research, and biomarker assessments.

Design, Setting, and Participants Exploratory study conducted between June 2018 and July 2022 at the National Institutes of Health Clinical Center, involving 86 US government staff and family members with AHIs from Cuba, Austria, China, and other locations as well as 30 US government control participants.

Exposures AHIs.

Main Outcomes and Measures Participants were assessed with extensive clinical, auditory, vestibular, balance, visual, neuropsychological, and blood biomarkers (glial fibrillary acidic protein and neurofilament light) testing. The patients were analyzed based on the risk characteristics of the AHI identifying concerning cases as well as geographic location.

Results Eighty-six participants with AHIs (42 women and 44 men; mean [SD] age, 42.1 [9.1] years) and 30 vocationally matched government control participants (11 women and 19 men; mean [SD] age, 43.8 [10.1] years) were included in the analyses. Participants with AHIs were evaluated a median of 76 days (IQR, 30-537) from the most recent incident. In general, there were no significant differences between participants with AHIs and control participants in most tests of auditory, vestibular, cognitive, or visual function as well as levels of the blood biomarkers. Participants with AHIs had significantly increased fatigue, depression, posttraumatic stress, imbalance, and neurobehavioral symptoms compared with the control participants. There were no differences in these findings based on the risk characteristics of the incident or geographic location of the AHIs. Twenty-four patients (28%) with AHI presented with functional neurological disorders.

Conclusions and Relevance In this exploratory study, there were no significant differences between individuals reporting AHIs and matched control participants with respect to most clinical, research, and biomarker measures, except for objective and self-reported measures of imbalance and symptoms of fatigue, posttraumatic stress, and depression. This study did not replicate the findings of previous studies, although differences in the populations included and the timing of assessments limit direct comparisons.
Open access paper: https://jamanetwork.com/journals/jama/fullarticle/2816533
--

Neuroimaging findings in US government personnel and their family members involved in anomalous health incidents
Pierpaoli C, Nayak A, Hafiz R, et al; NIH AHI Intramural Research Program Team. Neuroimaging findings in US government personnel and their family members involved in anomalous health incidents.  JAMA. Published March 18, 2024. doi:10.1001/jama.2024.2424

Key Points

Question Can a systematic evaluation using quantitative magnetic resonance imaging (MRI) metrics identify potential brain lesions in patients who have experienced anomalous health incidents (AHIs) compared with a well-matched control group?

Findings In this exploratory study that involved brain imaging of 81 participants who experienced AHIs and 48 matched control participants, there were no significant between-group differences in MRI measures of volume, diffusion MRI–derived metrics, or functional connectivity using functional MRI after adjustments for multiple comparisons. The MRI results were highly reproducible and stable at longitudinal follow-ups. No clear relationships between imaging and clinical variables emerged.

Meaning In this exploratory neuroimaging study, there was no significant MRI-detectable evidence of brain injury among the group of participants who experienced AHIs compared with a group of matched control participants. This finding has implications for future research efforts as well as for interventions aimed at improving clinical care for the participants who experienced AHIs.

Abstract

Importance US government personnel stationed internationally have reported anomalous health incidents (AHIs), with some individuals experiencing persistent debilitating symptoms.

Objective To assess the potential presence of magnetic resonance imaging (MRI)–detectable brain lesions in participants with AHIs, with respect to a well-matched control group.

Design, Setting, and Participants This exploratory study was conducted at the National Institutes of Health (NIH) Clinical Center and the NIH MRI Research Facility between June 2018 and November 2022. Eighty-one participants with AHIs and 48 age- and sex-matched control participants, 29 of whom had similar employment as the AHI group, were assessed with clinical, volumetric, and functional MRI. A high-quality diffusion MRI scan and a second volumetric scan were also acquired during a different session. The structural MRI acquisition protocol was optimized to achieve high reproducibility. Forty-nine participants with AHIs had at least 1 additional imaging session approximately 6 to 12 months from the first visit.

Exposure AHIs.

Main Outcomes and Measures Group-level quantitative metrics obtained from multiple modalities: (1) volumetric measurement, voxel-wise and region of interest (ROI)–wise; (2) diffusion MRI–derived metrics, voxel-wise and ROI-wise; and (3) ROI-wise within-network resting-state functional connectivity using functional MRI. Exploratory data analyses used both standard, nonparametric tests and bayesian multilevel modeling.

Results Among the 81 participants with AHIs, the mean (SD) age was 42 (9) years and 49% were female; among the 48 control participants, the mean (SD) age was 43 (11) years and 42% were female. Imaging scans were performed as early as 14 days after experiencing AHIs with a median delay period of 80 (IQR, 36-544) days. After adjustment for multiple comparisons, no significant differences between participants with AHIs and control participants were found for any MRI modality. At an unadjusted threshold (P < .05), compared with control participants, participants with AHIs had lower intranetwork connectivity in the salience networks, a larger corpus callosum, and diffusion MRI differences in the corpus callosum, superior longitudinal fasciculus, cingulum, inferior cerebellar peduncle, and amygdala. The structural MRI measurements were highly reproducible (median coefficient of variation <1% across all global volumetric ROIs and <1.5% for all white matter ROIs for diffusion metrics). Even individuals with large differences from control participants exhibited stable longitudinal results (typically, <±1% across visits), suggesting the absence of evolving lesions. The relationships between the imaging and clinical variables were weak (median Spearman ρ = 0.10). The study did not replicate the results of a previously published investigation of AHIs.

Conclusions and Relevance In this exploratory neuroimaging study, there were no significant differences in imaging measures of brain structure or function between individuals reporting AHIs and matched control participants after adjustment for multiple comparisons.

Open access paper: https://jamanetwork.com/journals/jama/fullarticle/2816532

--
Do blue light filter applications improve sleep outcomes? A study of smartphone users' sleep quality in an observational setting
Rabiei M, Masoumi SJ, Haghani M, Nematolahi S, Rabiei R, Mortazavi SMJ (2024). Do blue light filter applications improve sleep outcomes? A study of smartphone users' sleep quality in an observational setting. Electromagnetic Biology and Medicine, DOI: 10.1080/15368378.2024.2327432.
Abstract

Exposure to blue light at bedtime, suppresses melatonin secretion, postponing the sleep onset and interrupting the sleep process. Some smartphone manufacturers have introduced night-mode functions, which have been claimed to aid in improving sleep quality. In this study, we evaluate the impact of blue light filter application on decreasing blue light emissions and improving sleep quality. Participants in this study recorded the pattern of using their mobile phones through a questionnaire. In order to evaluate sleep quality, we used a PSQI questionnaire. Blue light filters were used by 9.7% of respondents, 9.7% occasionally, and 80% never. The mean score of PSQI was more than 5 in 54.10% of the participants and less than 5 in 45.90%. ANOVA test was performed to assess the relationship between using blue light filter applications and sleep quality (p-value = 0.925). The findings of this study indicate a connection between the use of blue light filter apps and habitual sleep efficiency in the 31–40 age group. However, our results align only to some extent with prior research, as we did not observe sustained positive effects on all parameters of sleep quality from the long-term use of blue light filtering apps. Several studies have found that blue light exposure can suppress melatonin secretion, exacerbating sleep problems. Some studies have reported that physical blue light filters, such as lenses, can affect melatonin secretion and improve sleep quality. However, the impact of blue light filtering applications remains unclear and debatable.

Plain Language Summary

Using smartphones before bedtime and being exposed to its blue light can make it harder to fall asleep and disrupt your sleep. Some smartphone makers have introduced a night mode feature claiming it can help improve your sleep. In this study, we wanted to find out if using these blue light filters on smartphones really makes a difference. We asked people how often they used blue light filters on their phones and also had them fill out a questionnaire about their sleep quality. Only about 10% of people said they used blue light filters regularly, another 10% used them occasionally, and the majority, around 80%, never used them. When we looked at the results, more than half of the participants had sleep scores higher than 5, indicating they might have sleep problems. Less than half had sleep scores lower than 5, suggesting better sleep quality. We used some statistical tests to see if using blue light filters had any link to sleep quality, and the results showed that there was only a connection between the use of blue light filter apps and habitual sleep efficiency in the 31–40 age group. Our findings matched what other studies have found before, that using blue light filters on smartphones may not significantly help improve sleep. So, while it might be a good idea to limit smartphone use before bed, using a blue light filter app may not be the magic solution for better sleep.

https://www.tandfonline.com/doi/full/10.1080/15368378.2024.2327432
--

Mobile phone radiation disturbs cytokinesis and causes cell death in buccal cells: Results of controlled human intervention study
Kundi M, Nersesyan A, Schmid G, Hutter HP, Eibensteiner F, Mišík M, Knasmüller S. Mobile phone specific radiation disturbs cytokinesis and causes cell death but not acute chromosomal damage in buccal cells: Results of a controlled human intervention study. Environ Res. 2024 Mar 5:118634. doi: 10.1016/j.envres.2024.118634.

Abstract

Several human studies indicate that mobile phone specific electromagnetic fields may cause cancer in humans but the underlying molecular mechanisms are currently not known. Studies concerning chromosomal damage (which is causally related to cancer induction) are controversial and are based on the use of questionnaires to assess the exposure. We realized the first human intervention trial in which chromosomal damage and acute toxic effects were studied under controlled conditions. The participants were exposed via headsets at one randomly assigned side of the head to low and high doses of a UMTS signal (n = 20, to 0.1 W/kg and n = 21 to 1.6 W/kg Specific Absorption Rate) for 2h on 5 consecutive days. Before and three weeks after the exposure buccal cells were collected from both cheeks and micronuclei (MN, which are formed as a consequence of structural and numerical chromosomal aberrations) and other nuclear anomalies reflecting mitotic disturbance and acute cytotoxic effects were scored. We found no evidence for induction of MN and of nuclear buds which are caused by gene amplifications, but a significant increase of binucleated cells which are formed as a consequence of disturbed cell divisions, and of karyolitic cells, which are indicative for cell death. No such effects were seen in cells from the less exposed side. Our findings indicate that mobile phone specific high frequency electromagnetic fields do not cause acute chromosomal damage in oral mucosa cells under the present experimental conditions. However, we found clear evidence for disturbance of the cell cycle and cytotoxicity. These effects may play a causal role in the induction of adverse long term health effects in humans.

Final paragraph of paper:

As mentioned in the introduction, evidence is accumulating that exposure to HF-EMF is associated with specific brain tumors (Brabant et al., 2023; Carlberg et al., 2017; Coureau et al., 2014; Hardell and Carlberg, 2015; Hardell et al., 2013; IARC, 2013; INTERPHONE Study Group, 2010). The results of the present investigation indicate that molecular mechanisms other than chromosomal damage may cause neoplastic transformation of the cells as a consequence of exposure to mobile phone specific HF-EMF. As described in the result section, we found in the present study clear evidence for induction of acute toxicity and disturbance of the cell cycle (cytokinesis) as a consequence of exposure to a high radiation dose (1.6 W/kg). It is possible that these effects cause inflammatory responses and/or release of ROS, which were seen in a number of laboratory studies (e.g. Alipour et al., 2022; Benavides et al., 2023; IARC, 2013; Yakymenko et al., 2016). These processes may possibly lead to formation of neoplastic cells.

Open access paper: https://www.sciencedirect.com/science/article/pii/S0013935124005383?via%3Dihub
--
Evaluation of neonatal outcomes according to the specific absorption rate values of phones used during pregnancy
Büyükeren M, Karanfil Yaman F. Evaluation of neonatal outcomes according to the specific absorption rate values of phones used during pregnancy. J Turk Ger Gynecol Assoc. 2024 Mar 6;25(1):7-12. doi: 10.4274/jtgga.galenos.2023.2022-10-1.

Abstract

Objective: The aim was to compare neonatal outcomes according to cell phone specific absorption rate (SAR) levels and daily time spent on cell phones by pregnant women.

Material and methods: Women who gave birth at Konya City Hospital between September 2020 and February 2021 were included in this retrospective study. Gestational ages, birth weight, birth length, head circumference, sex, 5-minute APGAR scores, neonate postpartum resuscitation requirement, delivery type, the model of phone used by the pregnant women, and the average time spent on the phone during a day were recorded. To determine the relation between the SAR values of the phones used and delivering a small for gestational age (SGA) baby, receiver operating characteristic curve analysis was performed.

Results: In total 1495 pregnant women were included. The rate of delivering a SGA fetus was significantly higher in women who used phones with higher SAR values (p=0.001). The cut-off value for the SAR level was 1.23 W/kg with 69.3% sensitivity and 73.0% specificity (area under the curve: 0.685; 95% confidence interval: 0.643-0.726). No correlation was found between time spent on the phone and SGA birth rate. Although both phone SAR values and time spent on the phone were higher in the symmetrical SGA group compared to the asymmetrical SGA group, the difference was not significant (p>0.05). Although the women who had preterm delivery had higher phone SAR values and had spent more time on the phone compared to those who had term deliveries, the difference was again not significant (p>0.05).

Conclusion: As the SAR values of cell phones used during pregnancy increased, there was a trend towards delivering a SGA baby.

Open access paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10921072/
--

Do somatic symptom distress and attribution predict symptoms associated with environmental factors?
Köteles F, Nordin S. Do somatic symptom distress and attribution predict symptoms associated with environmental factors? J Psychosom Res. 2024 Mar 1;179:111637. doi: 10.1016/j.jpsychores.2024.111637.

Abstract
Objective: Not much is known on the development of symptoms associated with environmental factors (SAEF), also known as (idiopathic) environmental intolerances. Findings from qualitative studies suggest that appearance of symptoms might be the first step, followed by the acquisition of a specific attribution. The current study investigated cross-sectional and longitudinal (three years) associations between attribution and symptoms with respect to symptoms associated with chemical substances, certain indoor environments (buildings), sounds, and electromagnetic fields (EMFs).

Methods: We used data from the first two waves of the population-based Västerbotten Environmental Health Study (n = 2336). Participants completed the Patient Health Questionnaire Somatic Symptom Scale (PHQ-15), the Environmental Symptom-Attribution Scale, and answered single questions on the four aforementioned SAEFs.

Results: Using binary logistic regression analyses, all four SAEFs showed significant cross-sectional associations with somatic symptom distress and the respective attribution. In the longitudinal analysis, development of SAEF-Sound and SAEF-Chemicals were predicted by both somatic symptom distress and attribution. SAEF-EMFs was predicted only by attribution, whereas neither somatic symptom distress nor attribution forecasted SAEF-Buildings.

Conclusion: Overall, these findings suggest that attribution (i.e., a specific expectation) plays a substantial role in the development and maintenance of many SAEFs.

Open access paper: https://www.sciencedirect.com/science/article/pii/S0022399924000497?via%3Dihub
--

Micro-environmental personal radio-frequency electromagnetic field exposures in Melbourne: A longitudinal trend analysis
Bhatt CR, Henderson S, Sanagou M, Brzozek C, Thielens A, Benke G, Loughran S. Micro-environmental personal radio-frequency electromagnetic field exposures in Melbourne: A longitudinal trend analysis. Environ Res. 2024 Mar 13:118629. doi: 10.1016/j.envres.2024.118629.

Abstract

Background: A knowledge gap exists regarding longitudinal assessment of personal radio-frequency electromagnetic field (RF-EMF) exposures globally. It is unclear how the change in telecommunication technology over the years translates to change in RF-EMF exposure. This study aims to evaluate longitudinal trends of micro-environmental personal RF-EMF exposures in Australia.

Methods: The study utilised baseline (2015-16) and follow-up (2022) data on personal RF-EMF exposure (88 MHz-6 GHz) measured across 18 micro-environments in Melbourne. Simultaneous quantile regression analysis was conducted to compare exposure data distribution percentiles, particularly median (P50), upper extreme value (P99) and overall exposure trends. RF-EMF exposures were compared across six exposure source types: mobile downlink, mobile uplink, broadcast, 5G-New Radio, Others and Total (of the aforementioned sources). Frequency-specific exposures measured at baseline and follow-up were also compared. Total exposure across different groups of micro-environment types were also compared.

Results: For all micro-environmental data, total (median and P99) exposure levels did not significantly change at follow-up. Overall exposure trend of total exposure increased at follow-up. Mobile downlink contributed the highest exposure among all sources showing an increase in median exposure and overall exposure trend. Of seven micro-environment types, five of them showed total exposure levels (median and P99) and overall exposure trend increased at follow-up.
Excerpt
The assessment of change in total personal RF-EMF exposure distribution at follow-up across all micro-environments and those for different micro-environment types showed inconsistent changes in the exposure levels and overall exposure trend. The median and upper extreme total RF-EMF exposure levels across the micro-environments showed no significant change; whilst overall trend of total exposure at follow-up increased during the study period. Mobile downlink, the largest exposure source, median exposure and overall exposure trend increased (26.7%, up to 34.3%, respectively) at follow-up. The observed increase in median and upper extreme exposure levels as well as overall total exposure trend at follow-up remained consistent for the majority of micro-environment types.
Open access paper: https://www.sciencedirect.com/science/article/pii/S0013935124005334?via%3Dihub
--

New-generation electronic appliances and cardiac implantable electronic devices: a systematic literature review of mechanisms and in vivo studies
Kewcharoen J, Shah K, Bhardwaj R, Contractor T, Turagam MK, Mandapati R, Lakkireddy D, Garg J. New-generation electronic appliances and cardiac implantable electronic devices: a systematic literature review of mechanisms and in vivo studies. J Interv Card Electrophysiol. 2024 Mar 5. doi: 10.1007/s10840-024-01777-z.
Abstract

Introduction: Cardiac implantable electronic device (CIED) functions are susceptible to electromagnetic interference (EMI) from electromagnetic fields (EMF). Data on EMI risks from new-generation electronic appliances (EA) are limited.

Objective: We performed a systematic literature review on the mechanisms of EMI, current evidence, and recently published trials evaluating the effect of EMF on CIEDs from electric vehicles (EV), smartphone, and smartwatch technology and summarize its safety data.

Methods: Electronic databases, including PubMed and EMBASE, were searched for in vivo studies evaluating EMF strength and incidence between CIEDs and commercial EVs, new-generation smartphones, and new-generation smartwatches.

Results: A total of ten studies (three on EVs, five on smartphones, one on smartphones, one on smartphones and smartwatches) were included in our systematic review. There was no report of EMI incidence associated with EVs or smartwatches. Magnet-containing smartphones (iPhone 12) can cause EMI when placed directly over CIEDs - thereby triggering the magnet mode; otherwise, no report of EMI was observed with other positions or smartphone models.

Conclusion: Current evidence suggests CIED recipients are safe from general interaction with EVs/HEVs, smartphones, and smartwatches. Strictly, results may only be applied to commercial brands or models tested in the published studies. There is limited data on EMI risk from EVs wireless charging and smartphones with MagSafe technology.
https://pubmed.ncbi.nlm.nih.gov/38443707/
--
Electric vehicles and health: A scoping review
Pennington AF, Cornwell CR, Sircar KD, Mirabelli MC. Electric vehicles and health: A scoping review. Environ Res. 2024 Mar 16:118697. doi: 10.1016/j.envres.2024.118697.

Abstract

Background: The health impacts of the rapid transition to the use of electric vehicles are largely unexplored. We completed a scoping review to assess the state of the evidence on use of battery electric and hybrid electric vehicles and health.

Methods: We conducted a literature search of MEDLINE, Embase, Global Health, CINAHL, Scopus, and Environmental Science Collection databases for articles published January 1990 to January 2024. We included articles if they presented observed or modeled data on the association between battery electric or hybrid electric cars, trucks, or buses and health-related outcomes. We abstracted data and summarized results.

Results: Out of 897 reviewed articles, 52 met our inclusion criteria. The majority of included articles examined transitions to the use of electric vehicles (n = 49, 94%), with fewer studies examining hybrid electric vehicles (n = 11, 21%) or plug-in hybrid electric vehicles (n = 8, 15%). The most common outcomes examined were premature death (n = 41, 79%) and monetized health outcomes such as medical expenditures (n = 33, 63%). We identified only one observational study on the impact of electric vehicles on health; all other studies reported modeled data. Almost every study (n = 51, 98%) reported some evidence of a positive health impact of transitioning to electric or hybrid electric vehicles, although magnitudes of association varied. There was a paucity of information on the environmental justice implications of vehicle transitions.

Conclusions: The results of the current literature on electric vehicles and health suggest an overall positive health impact of transitioning to electric vehicles. Additional observational studies would help expand our understanding of the real-world health effects of electric vehicles. Future research focused on the environmental justice implications of vehicle fleet transitions could provide additional information about the extent to which the health benefits occur equitably across populations.
https://pubmed.ncbi.nlm.nih.gov/38499224/
--

Electromagnetic exposure analysis of the subway passenger under the civil communication system radiation
Zhou WY, Zhang XY, Lu M. Electromagnetic exposure analysis of the subway passenger under the civil communication system radiation. PLoS One. 2024 Mar 11;19(3):e0300049. doi: 10.1371/journal.pone.0300049.

Abstract
In order to assess the electromagnetic exposure safety of passengers under the civil communication system of the subway, the radio-frequency (RF) electromagnetic environment of subway carriage is established by using COMSOL Multiphysics software, it includes a 1-1/4 " leaky coaxial cable (LCX1) and a 1-5/8" leaky coaxial cable (LCX2), which are designed to be the exposure sources, and twelve passengers at different position. The electromagnetic environment model has been verified through field measurement. The exposure dose distribution of twelve passengers is compared and analyzed, when LCX1 and LCX2 works respectively. The simulated results show that, to compare with LCX2, the electromagnetic dose absorbed by the passengers is reduced by 9.19% and 22.50% at 2100 MHz and 2600 MHz respectively. The specific absorption rate (SAR) of passengers obtains the maximum value of 1.91×10−4 W/Kg and the temperature rise to 0.214 K when the LCX1 works at 3400 MHz. By comparing with the public exposure limitation of the International Commission of Non-Ionizing Radiation Protection (ICNIRP), it demonstrates the electromagnetic exposure safety of the passengers under the civil communication system. More importantly, the proposed LCX1 not only could add the 5G signal cover but also lower the SAR absorbed by the passengers, which indicates that the public electromagnetic exposure dose could be reduced by adjusting the radiation performances of exposure source, which provide a new way for electromagnetic protecting.

Open access paper: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300049
--
Impact of specific electromagnetic radiation on wakefulness in mice
Deng H, Liu L, Tang X, Lu Y, Wang X, Zhao Y, Shi Y. Impact of specific electromagnetic radiation on wakefulness in mice. Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2313903121. doi: 10.1073/pnas.2313903121.

Abstract
Electromagnetic radiation (EMR) in the environment, particularly in the microwave range, may constitute a public health concern. Exposure to 2.4 GHz EMR modulated by 100 Hz square pulses was recently reported to markedly increase wakefulness in mice. Here, we demonstrate that a similar wakefulness increase can be induced by the modulation frequency of 1,000 Hz, but not 10 Hz. In contrast to the carrier frequency of 2.4 GHz, 935 MHz EMR of the same power density has little impact on wakefulness irrespective of modulation frequency. Notably, the replacement of the 100 Hz square-pulsed modulation by sinusoidal-pulsed modulation of 2.4 GHz EMR still allows a marked increase of wakefulness. In contrast, continuous sinusoidal amplitude modulation of 100 Hz with the same time-averaged power output fails to trigger any detectable change of wakefulness. Therefore, alteration of sleep behavior by EMR depends upon not just carrier frequency but also frequency and mode of the modulation. These results implicate biological sensing mechanisms for specific EMR in animals.
Significance
Increased wakefulness in mice was previously found to be a direct result of prolonged exposure to 2.4 GHz electromagnetic radiation (EMR) with 100 Hz square-pulsed modulation at 1/8 duty cycle. Several key issues remain unaddressed. Does the frequency of the square-pulsed modulation matter? Are the sharp edges of the square pulses a major contributor to sleep/wakefulness alteration? Can carrier frequencies other than 2.4 GHz induce sleep/wakefulness alteration? Does the duty cycle matter? In this study, we answer these questions by demonstrating the dependency of sleep/wakefulness alteration on EMR modulation frequency, carrier frequency, and modulation mode.
Excerpts
Modeling and experimental assessment of human exposure to 935 MHz or 2.14 GHz EMR at a dose level of 3.6 W/kg local SAR revealed a maximal skin temperature increase of 0.31 °C and a brain temperature elevation of <0.1 °C (21). In our case, the maximum local SAR value measured with the cSAR3D testing system is 3.6 W/kg and the averaged SAR is 2.81 ± 0.15 W/kg. Hence, the observed EMR impact on sleep in our study is most likely nonthermal....
In conclusion, our study reveals distinct specificity of EMR. Prolonged exposure to the carrier frequency 2.4 GHz EMR with square pulse modulation of different frequencies induces varying changes of wakefulness in mice. In contrast to 2.4 GHz, the carrier frequency 935 MHz has little impact on wakefulness or NREM sleep. Then, 2.4 GHz EMR with sinusoidal pulse modulation, but not continuous sinusoidal modulation of 100 Hz, results in an increase in wakefulness. These findings link specific biological responses to specific parameters of EMR, namely carrier frequency, modulation frequency, and modulation mode. The underlying mechanisms for these observations remain to be unveiled.
https://pubmed.ncbi.nlm.nih.gov/38557178/
--
Effect of 2.45 GHz Microwave Radiation on the Inner Ear: A Histopathological Study on 2.45 GHz Microwave Radiation and Cochlea
Tahir E, Akar Karadayı A, Gülşen Gürgen S, Korunur Engiz B, Turgut A. Effect of 2.45 GHz Microwave Radiation on the Inner Ear: A Histopathological Study on 2.45 GHz Microwave Radiation and Cochlea. J Int Adv Otol. 2024 Jan;20(1):35-43. doi: 10.5152/iao.2024.231142.

Abstract

Background: The present study aims to determine the possible low dose-dependent adverse effects of 2.45 GHz microwave exposure and Wi-Fi frequency on the cochlea.

Methods: Twelve pregnant female rats (n=12) and their male newborns were exposed to Wi-Fi frequencies with varying electric field values of 0.6, 1.9, 5, 10 V/m, and 15 V/m during the 21-day gestation period and 45 days after birth, except for the control group. Auditory brainstem response testing was performed before exposure and sacrification. After removal of the cochlea, histopathological examination was conducted by immunohistochemistry methods using caspase (cysteine-aspartic proteases, cysteine aspartates, or cysteine-dependent aspartate-directed proteases)-3, -9, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Kruskal-Wallis and Wilcoxon tests and multivariate analysis of variance were used.

Results: Auditory brainstem response thresholds in postexposure tests increased statistically significantly at 5 V/m and above doses. When the number of apoptotic cells was compared in immunohistochemistry examination, significant differences were found at 10 V/m and 15 V/m doses (F(5,15)=23.203, P=.001; Pillai's trace=1.912, η2=0.637). As the magnitude of the electric field increased, all histopathological indicators of apoptosis increased. The most significant effect was noted on caspase-9 staining (η2 c9=0.996), followed by caspase-3 (η2 c3=0.991), and TUNEL staining (η2 t=0.801). Caspase-3, caspase-9, and TUNEL-stained cell densities increased directly by increasing the electric field and power values.

Conclusion: Apoptosis and immune activity in the cochlea depend on the electric field and power value. Even at low doses, the electromagnetic field in Wi-Fi frequency damages the inner ear and causes apoptosis.
Open access paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895889/
--
Ashwagandha Diminishes Hippocampal Apoptosis Induced by Wi-Fi Radiation in Male Quails
Gupta V, Srivastava R. Ashwagandha Diminishes Hippocampal Apoptosis Induced by Microwave Radiation by Acetylcholinesterase Dependent Neuro-Inflammatory Pathway in Male Coturnix coturnix Japonica. Neurochem Res. 2024 Mar 20. doi: 10.1007/s11064-024-04127-7.

Abstract

Microwave radiation (MWR) has been linked to neurodegeneration by inducing oxidative stress in the hippocampus of brain responsible for learning and memory. Ashwagandha (ASW), a medicinal plant is known to prevent neurodegeneration and promote neuronal health. This study investigated the effects of MWR and ASW on oxidative stress and cholinergic imbalance in the hippocampus of adult male Japanese quail. One control group received no treatment, the second group quails were exposed to MWR at 2 h/day for 30 days, third was administered with ASW root extract orally 100 mg/day/kg body weight and the fourth was exposed to MWR and also treated with ASW. The results showed that MWR increased serum corticosterone levels, disrupted cholinergic balance and induced neuro-inflammation. This neuro-inflammation further led to oxidative stress, as evidenced by decreased activity of antioxidant enzymes SOD, CAT and GSH. MWR also caused a significant decline in the nissil substances in the hippocampus region of brain indicating neurodegeneration through oxidative stress mediated hippocampal apoptosis. ASW, on the other hand, was able to effectively enhance the cholinergic balance and subsequently lower inflammation in hippocampus neurons. This suggests that ASW can protect against the neurodegenerative effects of MWR. ASW also reduced excessive ROS production by increasing the activity of ROS-scavenging enzymes. Additionally, ASW prevented neurodegeneration through decreased expression of caspase-3 and caspase-7 in hippocampus, thus promoting neuronal health. In conclusion, this study showed that MWR induces apoptosis and oxidative stress in the brain, while ASW reduces excessive ROS production, prevents neurodegeneration and promotes neuronal health.

Excerpt
Birds were exposed to 2.45 GHz of MW irradiation using Ruckus R310 Wi-fi router with maximum transmission strength of 25dbm at the middle of the cage. Average power density obtained within each partition of cage was found to be 0.1264 mw/cm2 and overall specific absorption rate (SAR) obtained per bird was determined to be 0.9978 W/Kg.

https://pubmed.ncbi.nlm.nih.gov/38506951/
--

Does Microwave Exposure at Different Doses in the Pre/Postnatal Period Affect Growing Rat Bone Development?
Karadayi A, Sarsmaz H, Çigel A, Engiz B, Ünal N, Ürkmez S, Gürgen S. Does Microwave Exposure at Different Doses in the Pre/Postnatal Period Affect Growing Rat Bone Development? Physiol Res. 2024 Mar 11;73(1):157-172.
Abstract

Effects of pre/postnatal 2.45 GHz continuous wave (CW), Wireless-Fidelity (Wi-Fi) Microwave (MW) irradiation on bone have yet to be well defined. The present study used biochemical and histological methods to investigate effects on bone formation and resorption in the serum and the tibia bone tissues of growing rats exposed to MW irradiation during the pre/postnatal period. Six groups were created: one control group and five experimental groups subjected to low-level different electromagnetic fields (EMF) of growing male rats born from pregnant rats. During the experiment, the bodies of all five groups were exposed to 2.45 GHz CW-MW for one hour/day. EMF exposure started after fertilization in the experimental group. When the growing male rats were 45 days old in the postnatal period, the control and five experimental groups' growing male and maternal rats were sacrificed, and their tibia tissues were removed. Maternal rats were not included in the study. No differences were observed between the control and five experimental groups in Receptor Activator Nuclear factor-kB (RANK) biochemical results. In contrast, there was a statistically significant increase in soluble Receptor Activator of Nuclear factor-kB Ligand (sRANKL) and Osteoprotegerin (OPG) for 10 V/m and 15 V/m EMF values. Histologically, changes in the same groups supported biochemical results. These results indicate that pre/postnatal exposure to 2.45 GHz EMF at 10 and 15 V/m potentially affects bone development.

Excerpt

In the present study, the effects of 2.45 GHz MW radiation on the bone of healthy rat tibia exposed to different doses of EMF during the prenatal and postnatal period were investigated using biochemical methods such as RANK, RANKL, OPG, and histopathological methods such as Tunel and immunohistochemical straining. Our findings showed that 2.45 GHz low-level MW radiation at 10 V/m (the peak SAR 10g value 14.4 mW/kg) and 15 V/m (the peak SAR 10g value 33.8 mW/kg) could cause changes in the bone. To our knowledge, our study seems to be the first investigation in literature focusing on effects on the bone of 2.45 GHz low-level MW radiation at different EMF values. Additionally, this research is the first article to determine the level of thermal and non-thermal effects on bone.

Open access paper: https://www.biomed.cas.cz/physiolres/pdf/73/73_157.pdf
--
The neuroprotective effects of baobab and black seed on the rat hippocampus exposed to a 900-MHz electromagnetic field
Mohamed H, Deniz OG, Kaplan S. The neuroprotective effects of baobab and black seed on the rat hippocampus exposed to a 900-MHz electromagnetic field. J Chem Neuroanat. 2024 Mar 4;137:102405. doi: 10.1016/j.jchemneu.2024.102405.
Abstract

This study investigated the potential effects on the hippocampus of electromagnetic fields (EMFs) disseminated by mobile phones and the roles of baobab (Adansonia digitata) (AD) and black seed (Nigella sativa) (BS) in mitigating these. Fifty-six male, 12-week-old Wistar albino rats were divided into eight groups of seven animals each. No EMF exposure was applied to the control, AD or BS groups, while the rats in the Sham group were placed in an EMF system with no exposure. A 900-MHz EMF was applied to the EMF+AD, EMF+BS, EMF+AD+BS and EMF groups for 1 hour a day for 28 days. Pyramidal neurons in the hippocampus were subsequently counted using the optical fractionator technique, one of the unbiased stereological methods. Tissue sections were also evaluated histopathologically under light and electron microscopy. The activities of the enzymes catalase (CAT) and superoxide dismutase (SOD) were also determined in blood serum samples. Analysis of the stereological data revealed no statistically significant differences between the EMF and control or sham groups in terms of pyramidal neuron numbers (p>0.05). However, stereological examination revealed a crucial difference in the entire hippocampus between the control group and the AD (p<0.01) and BS (p<0.05) groups. Moreover, exposure to 900-MHz EMF produced adverse changes in the structures of neurons at histopathological analysis. Qualitative examinations suggest that a combination of herbal products such as AD and BS exerts a protective effect against such EMF side-effects.

https://pubmed.ncbi.nlm.nih.gov/38447905/
Conclusion

We suggest that using appropriate quantities of natural antioxidants in combination with foodstuffs can inhibit or reduce the harmful effects of EMF radiation on the neurons of the brain. The human population, and especially children, should also be protected against exposure to radiation, especially that emitted from mobile phones. To the best of our knowledge, no prior study has demonstrated the effect of AD and BS in the EMF exposed rat hippocampus. Further studies focusing on the effect mechanism of antioxidants, especially AD and BS, that may represent novel protective substances against the side-effects of EMF radiation in the hippocampus, are now needed. Research involving different methods, durations and doses is therefore required.

--
Health and environmental effects to wildlife from radio telemetry and tracking devices—state of the science and best management practices
Manville AM, Levitt BB, Lai HC. Health and environmental effects to wildlife from radio telemetry and tracking devices—state of the science and best management practices. Frontiers in Veterinary Science, 11. 2024. doi: 10.3389/fvets.2024.1283709.

Abstract

This paper discusses the potential health risks and benefits to tagged wildlife from the use of radio tracking, radio telemetry, and related microchip and data-logger technologies used to study, monitor and track mostly wildlife in their native habitats. Domestic pets, especially canids, are briefly discussed as radio-tagging devices are also used on/in them. Radio tracking uses very high frequency (VHF), ultra-high frequency (UHF), and global positioning system (GPS) technologies, including via satellites where platform terminal transmitters (PTTs) are used, as well as geo-locating capabilities using satellites, radio-frequency identification (RFID) chips, and passive integrated responder (PIT) tags, among others. Such tracking technologies have resulted in cutting-edge findings worldwide that have served to protect and better understand the behaviors of myriad wildlife species. As a result, scientists, field researchers, technicians, fish and wildlife biologists and managers, plus wildlife and other veterinarian specialists, frequently opt for its use without fully understanding the ramifications to target species and their behaviors. These include negative physiological effects from electromagnetic fields (EMF) to which many nonhuman species are exquisitely sensitive, as well as direct placement/use-attachment impacts from radio collars, transmitters, and implants themselves. This paper provides pertinent studies, suggests best management practices, and compares technologies currently available to those considering and/or using such technologies. The primary focus is on the health and environmental risk/benefit decisions that should come into play, including ethical considerations, along with recommendations for more caution in the wildlife and veterinarian communities before such technologies are used in the first place.
Open access paper: https://www.frontiersin.org/articles/10.3389/fvets.2024.1283709
--

Electromagnetic fields regulate iron metabolism in living organisms: A review of effects and mechanism
Zhen C, Zhang G, Wang S, Wang J, Shang P. Electromagnetic fields regulate iron metabolism in living organisms: A review of effects and mechanism. Prog Biophys Mol Biol. 2024 Mar 4:S0079-6107(24)00023-3. doi: 10.1016/j.pbiomolbio.2024.03.001.
Abstract
The emergence, evolution, and spread of life on Earth have all occurred in the geomagnetic field, and its extensive biological effects on living organisms have been documented. The charged characteristics of metal ions in biological fluids determine that they are affected by electromagnetic field forces, thus affecting life activities. Iron metabolism, as one of the important metal metabolic pathways, keeps iron absorption and excretion in a relatively balanced state, and this process is precisely and completely controlled. It is worth paying attention to how the iron metabolism process of living organisms is changed when exposed to electromagnetic fields. In this paper, the processes of iron absorption, storage and excretion in animals (mammals, fish, arthropods), plants and microorganisms exposed to electromagnetic field were summarized in detail as far as possible, in order to discover the regulation of iron metabolism by electromagnetic field. Studies and data on the effects of electromagnetic field exposure on iron metabolism in organisms show that exposure profiles vary widely across species and cell lines. This process involves a variety of factors, and the complexity of the results is not only related to the magnetic flux density/operating frequency/exposure time and the heterogeneity of the observed object. A systematic review of the biological regulation of iron metabolism by electromagnetic field exposure will not only contributes to a more comprehensive understanding of its biological effects and mechanism, but also is necessary to improve human awareness of the health related risks of electromagnetic field exposure.

Open access paper: https://www.sciencedirect.com/science/article/pii/S0079610724000233?via%3Dihub
--
0.263 terahertz irradiation induced genes expression changes in Caenorhabditis elegans (roundworm)
Shang S, Gao F, Zhang Q, Song T, Wang W, Liu D, Gong Y, Lu X. 0.263 terahertz irradiation induced genes expression changes in Caenorhabditis elegans. iScience. 2024 Mar 2;27(4):109391. doi: 10.1016/j.isci.2024.109391.

Abstract
The biosafety of terahertz (THz) waves has emerged as a new area of concern with the gradual application of terahertz radiation. Even though many studies have been conducted to investigate the influence of THz radiation on living organisms, the biological effects of terahertz waves have not yet been fully revealed. In this study, Caenorhabditis elegans (C. elegans) was used to evaluate the biological consequences of whole-body exposure to 0.263 THz irradiation. The integration of transcriptome sequencing and behavioral tests of C. elegans revealed that high-power THz irradiation damaged the epidermal ultrastructures, inhibited the expression of the cuticle collagen genes, and impaired the movement of C. elegans. Moreover, the genes involved in the immune system and the neural system were dramatically down-regulated by high-power THz irradiation. Our findings offer fresh perspectives on the biological impacts of high-power THz radiation that could cause epidermal damage and provoke a systemic response.
Open access paper: https://www.cell.com/iscience/fulltext/S2589-0042(24)00612-6
--

Environmental Pollution and Risk of Childhood Cancer: A Scoping Review of Evidence from the Last Decade

Navarrete-Meneses MdP, Salas-Labadía C, Gómez-Chávez F, Pérez-Vera P. Environmental Pollution and Risk of Childhood Cancer: A Scoping Review of Evidence from the Last Decade. International Journal of Molecular Sciences. 2024; 25(6):3284. doi: 10.3390/ijms25063284.

Abstract
The long-term effects of environmental pollution have been of concern as several pollutants are carcinogenic, potentially inducing a variety of cancers, including childhood cancer, which is a leading cause of death around the world and, thus, is a public health issue. The present scoping review aimed to update and summarize the available literature to detect specific environmental pollutants and their association with certain types of childhood cancer. Studies published from 2013 to 2023 regarding environmental pollution and childhood cancer were retrieved from the PubMed database. A total of 174 studies were eligible for this review and were analyzed. Our search strategy brought up most of the articles that evaluated air pollution (29%) and pesticides (28%). Indoor exposure to chemicals (11%), alcohol and tobacco use during pregnancy (16%), electromagnetic fields (12%), and radon (4%) were the subjects of less research. We found a particularly high percentage of positive associations between prenatal and postnatal exposure to indoor (84%) and outdoor (79%) air pollution, as well as to pesticides (82%), and childhood cancer. Positive associations were found between leukemia and pesticides and air pollution (33% and 27%); CNS tumors and neuroblastoma and pesticides (53% and 43%); and Wilms tumor and other rare cancers were found in association with air pollution (50%). Indoor air pollution was mostly reported in studies assessing several types of cancer (26%). Further studies are needed to investigate the mechanisms underlying the potential associations between indoor/outdoor air pollution and pesticide exposure with childhood cancer risk as more preventable measures could be taken.

Open access paper: https://www.mdpi.com/1422-0067/25/6/3284
--
A broadband multi-frequency microwave combined biological exposure setup

Zhao X, Li Z, Liu X, Wang Y, Dong G, Liu Q, Wang C. A broadband multi-frequency microwave combined biological exposure setup. Rev. Sci. Instrum. 1 April 2024; 95 (4): 044702. doi: 10.1063/5.0196908

Abstract

With the rapid popularization of wireless electronic devices, there has been an increasing concern about the impacts of the electromagnetic environment on health. However, most research reports on the biological effects of microwaves have focused on a single frequency point. In reality, people are exposed to complex electromagnetic environments that consist of multiple frequency microwave signals in their daily lives. It is important to investigate whether multi-frequency combined microwave energies have different biological effects compared with single frequency microwave energy. Unfortunately, there are limited reports on this topic due to the lack of suitable platforms for research on multi-frequency microwave energy combined with biological exposure. To address this issue, this study presents a setup that has a very wide working frequency bandwidth and can be compatible with single frequency and multi-frequency microwave combined exposure. Moreover, it can achieve relatively equal exposure to multiple biological samples at any frequency point in the working frequency range, which is crucial for electromagnetic biology research. The experimental results are in good agreement with the simulation results, confirming its capability to facilitate the study of complex electromagnetic environment effects on organisms.

Open access paper: https://pubs.aip.org/aip/rsi/article/95/4/044702/3280194/A-broadband-multi-frequency-microwave-combined

Electromagnetic Radiation Safety
3.4.2024 20:13

Overview of Contents


Tips to Reduce Your Wireless Radiation Exposure
General
Welcome to EMR Safety

Featured News Stories
Overview of Older Contents
"Radiofrequency Radiation and Your Health: Is 5G Harmful?" (Joel Moskowitz, Federal Mobility Group webinar / video & slides, 2023)
"Health Effects of Cellphone & Cell Tower Radiation: Implications for 5G" (Joel Moskowitz, UC Center for Occupational & Environmental Health webinar / video & slides, 2021)
International Commission on the Biological Effects of Electromagnetic Fields (ICBE-EMF)
International EMF Scientist Appeal - see also https://emfscientist.org/ (video)
"Cellphone radiation is harmful, but few want to believe it" (Joel Moskowitz, UC Berkeley News, 2021)
Mobilize: A Film About Cell Phone Radiation (documentary video)
Wireless Radiation TV News Coverage (300+ TV news videos)

Overview Articles

5G: Health and Environmental Impact

"Regulators Steamroll Health Concerns as the Global Economy Embraces 5G" (Washington Spectator) "We Have No Reason to Believe 5G is Safe" (Scientific American) Scientific American Created Confusion about 5G's Safety: Will They Clear It Up?
5G Wireless Technology: Is 5G Harmful to Our Health? 5G Wireless Technology: Millimeter Wave Health Effects
Scientists and Doctors Demand Moratorium on 5GGovernment Accountability Office (GAO) 2020 Report on 5G5G and Health (Netherlands Health Council)European Parliament: 5G Health Effects and Environmental Impact
5G Wireless Technology: Cutting Through the Hype

Cell Tower Health Effects
Mobile Phone Health Effects
Key Cell Phone Radiation Research Studies
Recent Research on Wireless Radiation and Electromagnetic Fields (since 2016)

Cancer or Tumor Risk
Animal Studies
NTP Cell Phone Radiation Study: Final Reports
NTP: Not the First Govt. Study to Find Wireless Radiation Can Cause Cancer in Lab Rats
Ramazzini Institute Cell Phone Radiation Study Replicates NTP Study

Head and Neck Tumor Risk
New review study finds that heavier cell phone use increases tumor riskExpert report by former U.S. govt. official: High probability RF radiation causes brain tumorsCell phone and cordless phone use causes brain cancer: New reviewWHO Monograph on Cancer Risk from Mobile Phone UseStoryline vs. Rest-of-the-story: Brain cancer incidence, cellphone use & trends data Acoustic Neuroma and Cell Phone Use Thyroid Cancer and Mobile Phone Use
Cell Phone Use and Salivary Gland Tumor Risk
MOBI-KIDS: Childhood Brain Tumor Risk & Mobile Phone Use Study
The UK Million Women Study of Cell Phone Use and Brain Tumor Risk
Brain Tumor Incidence
Brain Tumor Rates Are Rising in the US: The Role of Cellphone & Cordless Phone Use
Trends in Brain Tumor Incidence Outside the U.S.
The Incidence of Meningioma, a Non-Malignant Brain Tumor, is Increasing in the U.S.


Reproductive Harm
Effect of Mobile Phones on Sperm QualityPregnancy & Wireless Radiation RisksFemale Infertility & Cell Phone Radiation


Other Health Risks
Research on Wireless Radiation Exposure to the Immune System Does long-term exposure to 4G LTE cell phone radiation impair cell phone users' health?
Effects of Cell Phone Use on Adolescents
Research on Smart Phone and Internet Addiction

Electromagnetic Hypersensitivity (EHS)Symptoms Experienced by Persons with EHS (FCC Docket #13-84)The "Havana syndrome": A special case of electrohypersensitivity
Does Cell Phone and Wi-Fi Radiation Cause Alzheimer's Disease? Cellphone use may be harmful for people with dental braces

Cell Phone and Wireless Radiation
Wireless Radiation Exposure LimitsInternational Commission on the Biological Effects of Electromagnetic Fields (ICBE-EMF)Study: Wireless radiation exposure for children should be hundreds of times lower than federal limits (based on NTP study) What's Wrong with Cell Phone Radiation Exposure Limits? (SAR)
Children are more exposed to cell phone radio-frequency radiation than adults


Wireless Radiation Health Risks
Cell Tower Health Effects
Cell Phone Towers are Largest Contributor to Environmental Radiofrequency Radiation

Recent Research on WiFi Effects
Wi-Fi in Schools & Other Public PlacesCouncil of Europe: Restrict Wi-Fi and Mobile Phone Use in Schools

Hybrid & Electric Cars: Electromagnetic Radiation Risks
International Perspective on Health Effects of Low Intensity Non-Ionizing Radiation
Recent Research on Wireless Radiation and Electromagnetic Fields (since 2016)
Effects of Exposure to Electromagnetic Fields (studies published from 1990 - 2024)
Power Watch: 1,670 Scientific Papers on EMF (1979 - 2018)

Genetic effects of non-ionizing electromagnetic fields
Research on Wireless Radiation Exposure to the Immune System

Environmental Health Risks (Effects on Other Species)
Electromagnetic fields threaten wildlifeEffects of Wireless Radiation on Birds and Other Wildlife
Product Safety
Buyer Beware: Cell Phone Radiation-Reducing Products
Cell Phone Cases Can Increase Radiation Exposure
AirPods: Are Apple's New Wireless Earbuds Safe? (Blood-brain barrier effects)New Apple Watch Reignites Concerns over Cell Phone Radiation

Power Line Frequencies (Extremely Low Frequency Fields)
Effects of Exposure to Electromagnetic Fields (studies published from 1990 - 2024)PowerWatch: 1,670 Scientific Papers on EMF (1979 - 2018)Cancer Risks from Exposure to Power Lines and Electrical Appliances
Recent Research on Wireless Radiation and Electromagnetic Fields (since 2016)

Wireless Radiation Research, Guidelines & Regulatory Policies
American Academy of Pediatrics
American Academy of Pediatrics: Protect Children from Cell Phone & Wireless Radiation

American Cancer Society
American Cancer Society: Cell Phone Radiation Risk

Berkeley Model Cell Phone Ordinance
Berkeley Cell Phone "Right to Know" Ordinance

California Public Health Department
Cell Phone Safety Guidance from the California Public Health Department
California's Cell Phone Safety Guidance: Media Coverage

Centers for Disease Control and Prevention
New York Times' Exposé of CDC's Retraction of Warnings about Cell Phone Radiation

Federal Communications Commission
How the FCC Shields Cellphone Companies from Safety Concerns (ProPublica)"Environmental Procedures at the FCC: A Case Study in Corporate Capture" by a former FCC officialAn Exposé of the FCC: An Agency Captured by the Industries it Regulates
Government Accountability Office (GAO)GAO 2012 Mobile Phone Report to the CongressGovernment Accountability Office (GAO) 2020 Report on 5G
Industry Influence
IEEE Committee on Man and Radiation (COMAR)
Industry-funded Scientists Undermine Cell Phone Radiation Science
Government Failure to Address Wireless Radiation Risks Cell Phone Industry Product Liability Lawsuit

International Commission on the Biological Effects of Electromagnetic Fields
International Commission on the Biological Effects of Electromagnetic Fields (ICBE-EMF)
International Commission on Non-Ionizing Radiation Protection
ICNIRP's Exposure Guidelines for Radio Frequency Fields
Worldwide Radio Frequency Radiation Exposure Limits versus Health Effects

International EMF Scientist Appeal (https://emfscientist.org)International Scientist Appeal on Electromagnetic Fields & Wireless Technology
World Health Organization / International Agency for Research on CancerWHO Radiofrequency EMF Health Risk Assessment Monograph (EHC series) WHO Radiofrequency Radiation Policy International Agency for Research on Cancer (WHO) Position on Radiofrequency Radiation

Electromagnetic Radiation Safety
13.3.2024 00:20

Wireless Radiation TV News


Which wireless radiation risks are covered most by TV news in the USA?

Since June 2014, television stations in the U.S have aired more than 300 news stories about the health risks from wireless radiation exposure. Almost half of these stories focus on radiation risks from cell phone use, including risks to children. About a third discussed cell tower radiation risks with four dozen stories focusing on cell towers (or Wi-Fi) on school campuses. Other technologies of concern include wireless smart meters and Wi-Fi-emitting devices.

Since 2018 more than a hundred news stories have reported on health concerns about the rollout of 5G, the fifth generation of cellular technology. Public concern about this issue has been covered by national network news and by local TV stations in more than 20 states and the District of Columbia.

CBS and its affiliates have provided the most news coverage about wireless radiation and health. Besides its national news coverage, almost all major CBS stations have run stories including stations in the following cities: Atlanta, Baltimore, Boston, Burlington, Charleston, Chicago, Cincinnati, Dallas, Denver, Des Moines, Detroit, Eugene, Houston, Kansas City (MO), Los Angeles, Las Vegas, Miami, Minneapolis, New York, Oklahoma City, Philadelphia, Phoenix, Pittsburgh, Portland (OR), Raleigh, Sacramento, Salt Lake City, San Antonio, San Diego, San Francisco, Spartanburg (NC), Spokane, Tampa Bay, and Washington, DC.

The above statistics are based upon Google searches for TV news stories about wireless radiation health risks where a video was posted online; thus, the overall amount of TV news coverage is under-estimated for this time period.

Links to TV new stories with online videos appear below. The list is sorted by TV network.


CBS's 60 Minutes has won every broadcast journalism award. In June, 2017, the show aired a story on smartphone addiction,"Hooked on Your Phone?", and in December, 2018, a story on the adverse effects of digital device use on children, "Phones, Tablets, and their Impact on Kids' Brains." However, 60 Minutes has never reported on the health risks from the wireless radiation produced by these devices. Do conflicts of interest prevent 60 Minutes from covering the story about why our government has not updated the obsolete wireless regulations that the FCC originally adopted in 1996 and reaffirmed in 2019 which fail to protect us from harmful levels of wireless radiation?


Updated: March 11, 2024
CBS News
Breckenridge fire department reopens station after concerning cell tower upgradeSpencer Wilson, CBS Colorado (Denver, CO), Dec 6, 2023

Proposed 115-foot Verizon cell tower being built in Bradenton neighborhood upsets residents
Shannon Clowe, WTSP (St. Petersburg, FL), Oct 10, 2023
Wyandotte 5G antenna debacle continues, T-Mobile and 2018 board president speak at recent school board meetingTerell Bailey, CBS Detroit (Detroit, MI), Mar 22, 2023

Wyandotte school adds 5G cellphone tower, congressional member gets involvedTerell Bailey, CBS Detroit (Detroit, Mi), Mar 9, 2023

Proposed Clay County cell towers spark dispute among neighborsMarleah Campbell, KCTV (Kansas City, MO), Jul 20, 2022

St Petersburg homeowners concerned about proposed 5G cell towerChris Rogers, WTSP (Tampa Bay, FL), Jul 6, 2022
Proposed cell towers face stiff opposition in some Vermont townsMelissa Cooney, WCAX (Burlington, VT), Mar 7, 2022
Have you seen these beige metal boxes being installed in your neighborhood?

Melissa Correa, KHOU (Houston, TX), Jan 26-27, 2021

West County residents push back against proposed 5G cell tower
Kim St. Onge, KMOV (St. Louis County, MO), Sep 11, 2020

Palo Alto Retirement Home Residents Fight To Remove 4G, 5G Cell Towers
Len Kiese, KPIX (CBS San Francisco), Sep 2, 2020

Oklahoma City Residents Concerned Over New 5G Towers
Karl Torp, KWTV (Oklahoma City, OK), Mar 3, 2020

Lakeside parents want cell tower removed
Kelly Hessedel, KFMB (San Diego, CA), Feb 18, 2020

Petition aims to block roll-out of 5G in Spartanburg
Henry Coburn, WSPA (Spartanburg, NC), Feb 4, 2020

Hinsdale Neighbors Fight Plans To Install 5G Cell Service, Citing Health Worries
Jermont Terry, CBS Chicago, Jan 13, 2020

5G is coming, and so is its RF radiation
Matt Gephardt, KUTV (Salt Lake City, UT), Dec 5, 2019

As cell phone carrier eyes Walnut Hills for 5G expansion, residents want more information
WKRC (Cincinnati, OH), Dec 3, 2019

Encinitas City Council votes on 5G cell towers
Richard Allyn, CBS San Diego, Oct 30, 2019
Concerned Residents Dispute A Cell Phone Tower That Could Be Built Near Canonsburg Schools Lisa Washington, CBS Pittsburgh, Oct 16, 2019

KCCI Investigates: Lawsuit filed over cellphone radiation
Alex Schuman, KCCI (Des Moines, IA), Sep 24, 2019
Encinitas residents rail against 5G cell towers
Richard Allyn, KFMB (San Diego, CA), Sep 23, 2019

Test finds iPhone 7 emitted twice the amount of radiation reported to regulators
CBS This Morning, Aug 22, 2019
Costa Mesa Residents Air Concerns Over 5G Towers
Stacey Butler, CBS Los Angeles, Aug 14, 2019
Protest held over 5G zoning ordinance in San Diego
Steve Fiorina, CBS San Diego, Aug 7, 2019

Boulder Holds Study Session On 5G Coverage For Concerned Residents
Tori Mason, CBS Denver, Jul 23, 2019
5G coming to Chico Hayley Watts, KVNV (Chico, CA), Jul 3, 2019

CBS13 Investigates: Could A New Cell Tower Hurt You Financially?
A new cell tower could put a local preschool out of business.
Julie Watts, CBS Sacramento, Jun 28, 2019
CBS San Francisco, Jul 6-7, 2019

Lake Forest residents voice concerns over 5G cell towers CBS Los Angeles, Jun 19, 2019

A look at the arrival of 5G, and just how dangerous it could be Angelina Dixson, KVAL (Eugene, OR), May 22, 2019
5G cell tower critics post 'health warning' signs
Lisa Balick, KOIN (Portland, OR), May 21, 2019

5G cell tower protest in Ashland
KTVL (Ashland, OR), May 15, 2019


Plan For 5G Cell Phone Towers Raises Health Concerns In Moraga Susie Steimle, CBS San Francisco, Apr 10, 2019
After several childhood cancer cases at one school, parents question radiation from cell tower CBS This Morning (CBS Network news), Apr 4, 2019
VERIFY: No, scientists didn't say AirPods cause cancer. But they do have questions.
Jason Puckett & David Tregde, WUSA (Washington, DC), Mar 20, 2019

Brain trauma suffered by U.S. diplomats abroad could be work of hostile foreign government
Scott Pelley, 60 Minutes (CBS Network news), Mar 17, 2019

Could Using Wireless Earbuds Be Putting You At Risk For Cancer?
Dr. Maria Simbra, CBS Pittsburgh, Mar 13, 2019

Experts: Wireless Headphones Like AirPods Could Pose Cancer Risk
KDFW (Dallas, TX), Mar 13, 2019

Recent Articles That Say AirPods Can Cause Cancer Are Not Quite Right
Tahesha Moise, WFMY (Greensboro, NC), Mar 13, 2019
Parents Blame Elementary School's Cell Tower After 4th Student Diagnosed With Cancer Jennifer McGraw, CBS Sacramento, Mar 13, 2019
Some Iowa residents push back against new smart meters
Hannah Hilyard, KCCI (Des Moines, IA), Dec 5, 2018
New study suggests that use of cell phones may affect memory in teenagers Rose Beltz, KREM (Spokane, WA), Jul 27, 2018

New 5G network with ubiquitous antennas raises health concerns among some
Steve Sbraccia, WNCN (Raleigh, NC), Jun 5, 2018

Wireless Worries: 5G service is coming – and so are health concerns over the towers that support it
Tony Dokoupil, CBS This Morning (national), May 29, 2018


5G wireless service Is coming, and so are health concerns over the towers that support It
CBS New York, May 29, 2018

5G Service Is Coming – And So Are Health Concerns Over The Towers That Support It
CBS Boston, May 29, 2018

Questions Raised About 5G Health Risks Months Before Sacramento Launches Service
CBS Sacramento, May 29, 2018

Radiation Concerns Being Raised Over New 5G Wireless Service
CBS Philadelphia, May 29, 2018

Can Cellphones Cause Cancer? Experts Surprised By Latest Tests CBS Pittsburgh, Mar 29, 2018
Ashland residents protesting 5G tower installation Richie Garza, KTVL (Medford, OR), May 25, 2018
Findings of cancer in rodents exposed to cell-phone-like radiation draws crowd to RTP Robert Richardson, WNCN (Raleigh, NC), Mar 28, 2018

I-Team Report: Cell Phone Dangers
Colette Boyd, WNEW (Saginaw, MI), Feb 14, 2018

Do Cellphones Cause Cancer?
Heather Brown, CBS Minnesota, Feb 8, 2018

This Cell Phone Radiation Study Found More Questions Than Answers
CBS Miami, Feb 7, 2018

Cellphone Radiation Linked To Tumors In Male Rats, Government Study Says
Andrea Borba, CBS San Francisco, Feb 2, 2018

ConsumerWatch: 5G Cellphone Towers Signal Renewed Concerns over Impacts on Health
Julie Watts and Abigail Sterling, CBS San Francisco, Jan 25, 2018

California to set guidelines for limiting cellphone radiation exposure
CBS Evening News (network), Dec 15, 2017
California health officials release guidelines on cellphone radiation
Susie Steimle, CBS San Francisco, Dec 14, 2017
CBS (network) News. Dec 14, 2017
CBS Los Angeles, Dec 14, 2017

California Public Health Officials Issue Cellphone Radiation Warning CBS Sacramento, Dec 13, 2017
When Kids Get Their First Cell Phones Around The World
CNN, CBS San Francisco, Dec 11, 2017

East Bay Homeowners Challenge Proposed Cellphone Towers
Emily Turner, CBS San Francisco, Nov 15, 2017
Cellphone EMF-Blocking Products Put In A Real World Test
Julie Watts, CBS San Francisco, Nov 14, 2017
Long Islanders Sue Over Health Concerns About New Cellphone Towers
Jennifer McLogan, CBS New York, Oct 19, 2017
Cities, Counties Line Up Against Bill Removing Limits On Cell Transmitters Lemor Abrams, CBS Sacramento, Jul 12, 2017
Plan To Install 50,000 Cell Towers In California Faces Opposition
Phil Matier, CBS San Francisco, June 28, 2017
Woodbury, L.I. Residents Furious Over Cellphone Repeaters On Their Block
Carolyn Gusoff, CBS New York, May 11, 2017

Cell towers could be built at dozens of Prince George's Co. schools
Scott Broom, WUSA (Washington, DC), May 11, 2017

Draft Fact Sheet From California Health Officials Links Cellphone Use, Cancer Risk
CBS Los Angeles, Mar 3, 2017

Consumer Watch: State Continues To Refuse To Release Records On Cell Phone Radiation
Julie Watts, CBS San Francisco, Feb 26, 2017

Judge Orders California To Release Papers Discussing Risk Of Cell Phone Use
Julie Watts, CBS San Francisco, Feb 24, 2017


Cell phone explosion caught on camera
WGCL (Atlanta, GA), Jan 12, 2017

San Francisco Cellphone Service Shockingly Bad For Global Tech Capitol
Susie Steimle, CBS San Francisco, Jan 3, 2017
Parents upset over proposed cell tower
WUSA (Washington, DC), Sep 28, 2016

Berkeley's Cellphone Radiation Warning Law Disputed Before Appeals Court
CBS SF Bay Area, Sep 13, 2016
Apple Unveils iPhone 7 Without Headphone Jack Julie Watts, CBS San Francisco, Sep 7, 2016

Man Chains Electric Meter To Prevent Utility From Installing Smart Meter Jon Delano, CBS Pittsburgh, Sep 1, 2016
Mt. Tabor neighbors fight plans for cell towers
Chris Holmstrom, KOIN (Portland, OR), Aug 31, 2016

Addressing health concerns of new KUB smart meters
Heather Burian, WVLT (Knoxville, TN), May 31, 2016


Study reignites concern about cell phones and cancer
Paula Cohen, CBS News, May 27, 2016

WiFi in schools: Is it hurting your child?
Paul Joncich, KLAS (Las Vegas, NV), May 10, 2016

New Research Links Cell Phones To Health Issues In Children
Ami Yensi, CBS Baltimore, May 3, 2016

Cell tower proposed behind middle school causing controversy
WDRW (Columbia County, GA), May 3, 2016

Protester Claims Vice President Biden's Son Died from Cell Phone-Related Brain Cancer
CBS SF Bay Area, Feb 28, 2016

Could Your Cell Phone Be Harming You?
Tess Leonhardt, WDTV (Bridgeport, WV), Feb 21, 2016

Notre Dame researchers target cell phone radiation
Zach Crenshaw, WSBT (Mishiwaka, IN), Jan 27, 2016

Bay Area Residents Worried About Radiation Face Uphill Battle Fighting Cell Towers
Julie Watts, CBS San Francisco, Jan 12, 2016

Scientists: Effects of cell phone radiation on kids is cause for concern
Ashley Daley, Live 5 News (Charleston, SC), Nov 6, 2015

SF Residents Battle Wireless Firms Over Super Bowl Building Boom In Neighborhood Cell Antenna Systems
Julie Watts, CBS San Francisco, Oct 31, 2015

Montgomery County parents concerned about wireless routers in schools
Mola Lenghi, WUSA9 (Maryland), Oct 20, 2015

Will Berkeley Cell Phone Ordinance Harm Consumers?
CBS This Morning, Jul 27, 2015

Retired Electronics Professor Wants To Create Wi-Fi Free Refuge
Mark Ackerman, CBS Denver, Jul 9, 2015

Are Wi-Fi Signals Making You Sick?
Marissa Bailey, CBS Chicago, July 1, 2015

People Believe Wi-Fi Is Making Them Sick
Dr. Mallika Marshall, CBS Boston, Jun 8, 2015

Seen At 11: Is Wi-Fi Making You Sick?
CBS New York, May 20, 2015

Why I Declared Our Bedroom A Wireless-Free Zone
Julie Watts, CBS SF Bay Area, May 20, 2015

Special Report: Upgrade Outage
WMMT (Kalamazoo, MI), May 19, 2015

Berkeley Passes Nation's First Radiation Warning For New Cellphones
CBS SF Bay Area, May 13, 2015
Berkeley, California, to require cellphone health warnings
CBS News, May 13, 2015

Cellphone safety: Where do you keep your phone? (web article) Elizabeth Hinson, CBS National, May 12, 2015 (last updated May 14, 2015)
KMOV (St. Louis, MO)
KPAX (Missoula, MT)
WCTV (Tallahassee, FL)
WDTV (Weston, West Virginia)
WFMY (Greensboro, NC)
WIVB (Buffalo, NY)
WKBN (Youngstown, OH)
WREQ (Memphis,TN)
WTSP (Tampa Bay, FL)

Can you get radiation poisoning from your cellphone?
CBS News, May 12, 2015

Woman Cuts Family Off From WiFi Over Health Concerns
Gerri Constant, CBS Los Angeles, May 5, 2015


LA County Firefighters Address Lawmakers Over Cell Tower Concerns
CBS Los Angeles, Mar 24, 2015

Local parents concerned about WiFi radiation

Andrea McCarren, WUSA (Washington, DC), Mar 7, 2015

Planned Smart Electric Meters On Long Island Draw Fears About Privacy, Radiation
CBS New York, Mar 6, 2015

Woman believes cell phone radiation nearly killed her husband Samantha Cortese, KESQ (Palm Desert, CA), Feb 18, 2015 (also ABC affiliate)

In-depth investigation: Examining reports of a cancer cluster at La Quinta Middle School
Natalie Brunnell, KESQ (Palm Desert, CA), Feb 12, 2015 (also ABC affiliate)

Failure to follow cellular antenna regulations raises safety issues
CBS Atlanta, Nov 17, 2014 (updated Feb 10, 2015)

Some residents worried about health effects of smart meters
WMMT (Kalamazoo, MI), Dec 3, 2014

New smart meters installed in Spokane raise questions

KREM (Spokane, WA), Dec 2, 2014
CPS Energy's smart meters show random spikes in radiation output
KENS (San Antonio, TX), Nov 18, 2015

Cell phone towers raise new concerns about safety
Jason Barry, KPHO (Phoenix), Nov 10, 2015 (updated Nov. 25)

FPL, Foes Of Smart Meters Square Off
CBS Miami, Sep 30, 2014

Are Cell Phones Really Giving Us Cancer? CBS Pittsburgh, Sep 15, 2014

Brain Cancer Warning Stickers Proposed For Cellphones Sold In Berkeley
CBS SF Bay Area, Aug 22, 2014



NBC News
Jefferson Hills families pushing back on planned installation of cell phone towerJillian Hartmann, WPXI (Pittsburgh, PA), Mar 11, 2024
'These children are vulnerable': Parents concerned over Franklin cell towerDaniel Smithson, WSMV (Nashville, TN), Nov 15, 2023

School board to meet amid Wyandotte elementary school cell tower controversyShawn Ley & Dave Kelley, WDIV (Detroit, MI), Oct 9, 2023

Parents outraged over cell tower being built next to Florida elementary school
Kristina Watrobski, WPMI (Mobile, AL), Apr 20, 2023
Key meeting between parents, school board occurring over cell tower on Wyandotte elementary schoolShawn Ley & Brandon Carr, WDIV (Detroit, MI), Apr 5, 2023
Concerned parents look for answers on impact of 5G cell tower at Wyandotte elementary school
Jacqueline Francis & Brandon Carr, WDIV (Detroit, MI), Mar 31, 2023
Parents voice concerns about activation of 5G cell tower on top of elementary school in WyandotteVictor Williams & Brandon Carr, WDIV (Detroit, MI), Mar 14, 2023
5G Towers Suddenly Showed Up Across NYC — Here's Why Some Neighborhoods Want Them GoneGus Rosendale, NBC New York, Nov 8, 2022
Proposed AT&T cell tower causes concern among neighbors in Kansas CityEmma James, KSHB (Kansas City, MO), Jul 19, 2022

New 5G cell phone tower in neighborhood has residents concerned about possible health impactsSeth Kovar, KRIS (Corpus Christi, TX), Mar 8, 2022

Potential new cell tower worries Topeka neighborsMatthew Johnstone, KSNT (Topeka, KS), Feb 14, 2022

Fact Check: Smart MetersNikki Rudd, WHEC (Rochester, NY), Jul 1, 2021
5G rollout in Tucson met with oppositionChorus Nylander, KVOA (Tucson, AZ), Jun 14, 2021
5G towers popping up across Tucson, City sends letter to State lawmakersChorus Nylander, KVOA (Tucson, AZ), Feb 23, 2021

City of Tucson & residents have zero control over cell pole placement
Allie Potter, KVOA (Tucson, AZ), Sep 2, 2020
Group bands together against 5G technology
Lacey Lett, KFOR (Oklahoma City, OK), Mar 3, 2020

Parents Protest Cell Tower Across Street from Elementary School
Niala Charles, KNSD (San Diego, CA), Feb 28, 2020

5G Generation: Is Connecticut Ready for The New Technology?
Len Besthoff, WVIT (West Hartford, CT), Feb 21, 2020

Florida group wants restrictions on where 5G units are placed
Alexander Osiadacz, WTLV-WJXX (NBC & ABC) (Jacksonville, FL), Feb 20, 2020

New push for Germantown cell tower raises new concerns
Kelli Cook, WMC (Memphis, TN), Jan 22, 2020

Parents Want Cellphone Tower Taken Off Church Steeple in San Jose
Damian Trujillo, NBC Bay Area, Jan 17, 2020

Northwest neighborhood concerned about possible Verizon 5G tower
Amanda Henderson, WOAI (San Antonio, TX), Jan 15, 2020

Parents, neighbors concerned over possible cell tower in NE Bend
Max Goldwasser, KTVZ (Bend, OR), Jan 6, 2020

Concerns over 5G tech in Jacksonville as City approves new regulations
Alexander Osiadacz, WJXX and WTLV (Jacksonville, FL), Dec 11, 2019 (also ABC)
Parents furious over plans to build 5G cell antenna just feet away from elementary school
WXPI (Pittsburgh, PA), Oct 23, 2019
Elk Meadow parents press councilors over cell tower
Jacob Larsen, KTVZ (Bend, OR), Oct 3, 2019

5G Whiz
Staff, Full Measure (NBC Network), Sep 15, 2019

Chicago Tribune: FCC investigating phone radiation findings
Ali Velshi, MSNBC, Aug 23, 2019 (interview w/ Sam Roe)

Neighbors fight losing battle against 5G tower right next to Denver home
Nelson Garcia, KUSA (Denver, CO), Aug 9, 2019
Concern grows over electromagnetic frequency radiation as cell phones turn to 5G Annaliese Garcia, WBBH (Fort Myers, FL), Aug 6, 2019
Cell tower causes some concern for Catalina residents
Eric Fink, KVOA (Tucson, AZ), Jun 6, 2019

Germantown withdraws plan for cell phone tower near elementary school
WMC (Memphis, TN), Jun 5, 2019

Cell phone radiation: Just how dangerous is it for you?
Angelina Dixson, KMTR (Eugene, OR), May 22, 2019

Locals plan rally against 5G rollout
KOBI (Medford, OR), May 15, 2019

Is 5G technology safe? The debate intensifies
Jennifer Lewke, WHEC (Rochester, NY), May 2, 2019

VERIFY: Does 5G cause health problems?
Gordon Severson, KARE (Minneapolis, MN), Apr 22, 2019

5G fears: Homeowners worry about mini towers in street
John Matarese, WTMJ (Milwaukee, WI), Feb 8, 2019

Testicular cancer: Why it's difficult to talk about, and why it's rising
Chris Hrapsky, KARE (Minneapolis, MN), Nov 21, 2018

People concerned about 5G as FCC approves installation
Allie Potter, KVOA (Tucson, AZ), Nov 16, 2018
Poor cell phone reception could increase your radiation exposure by 10,000x Bob Segall, WTHR (Indianapolis, IN), Oct 5, 2018
Protecting yourself from cellular radiation
Denelle Confair, KVOA (Tucson, AZ), Sep 23, 2018

Protestors rally against Pacific Power's smart meters
Rayvan Vares, KOBI (Medford, OR), Sep 22, 2018

Not in my backyard: Are cell towers coming to your neighborhood?
Nate Morabito, WCNC (Charlotte, NC), Jul 27, 2018

Pacific Power Installing Smart Meters in Jackson County
Elizabeth Ruiz, KOBI (Medford, OR), Jul 2, 2018

Palo Alto City Leaders Approve Verizon Cell Towers
Ian Cull, NBC Bay Area, May 22, 2018

Construction halted on cell tower near elementary school playground
Laura Wilson, KOAA (Colorado Springs, CO), Apr 25, 2018

City Council denies cell phone tower being built on church property
Natassia Paloma, KTSM (El Paso, TX), Apr 17, 2018

New Study Links Cancer to Cell Phone Use
Bianca Castro, KXAS (Dallas, TX), Mar 28, 2018
KOBF (Albuquerque, NM), Apr 3, 2018
WCMH (Columbus, OH), Apr 3, 2018
WBBH (Fort Myers, FL), Apr 3, 2018
WTHR (Indianapolis, IN), Apr 3, 2018
KPRC (Houston, TX), Apr 4, 2018

Verify: Are electromagnetic fields harmful to your health?
Tami Tremblay, KTVB (Boise, ID), Feb 8, 2018

New study reigniting cell phone, cancer debate
Rob Hughes, WCNC (Charlotte, NC), Feb 6, 2018


Study of rats reveals cellphone radiation risk is low
Erika Edwards, NBC Connecticut (West Hartford, CT), Feb 5, 2018
NBC Southern California, Feb 5, 2018

Aiken County Planning Commission recommends denying request for new cell phone tower
Ben Billmyer & Lia Fernandez, WRDW (Aiken County, SC), Jan 18, 2018


New guidance issued for avoiding cell phone radiation
Bob Segall, WTHR (Indianapolis, IN), Dec 26, 2017

How worried do we need to be about cell phone radiation?
Sean Franklin, WBIR (Knoxville, TN), Dec 22, 2017

Health officials release guidelines on dangerous cellphone radiation
Madeline Cuddihy, WXIA (Atlanta, GA), Dec 19, 2017

Debate over Cell Towers in Hillsborough
NBC Bay Area, Dec 18, 2017

Proposed bill would cover potential injuries from microwaves, cellphones
Elisha Machado, WWLP (Springfield, MA), Nov 28, 2017

New cellphone tower has some residents concerned
Kaylie Spotts, WNWO (Whitehouse, OH), Sep 4, 2017

Controversial T-Mobile cell phone tower back on Roswell's agenda
Christopher Hopper, WXIA (Atlanta, GA), Jul 11, 2017

Texas teen electrocuted after cell phone incident in bathtub
Presley Fowler, KCBD (Lubbock, Tx), Jul 11, 2017

2 students get cancer; Ripon parents want cell towers removed from schools
Natalie Brunell, KCRA (Sacramento, CA), Jun 20, 2017

Government Study Links Cellphone Radiation to Cancer
NBC Nightly News with Lester Holt, May 27, 2017

Greenbelt Residents Worried About Health Effects of Cellphone Tower
Darcy Spencer, NBC Washington (DC), Apr 25, 2017

Cellphone safety tips to limit radiation exposure
Natalie Brunell, KCRA (Sacramento, CA), Apr 9, 2017

Sign puts Berkeley in center of cellphone debate
Natalie Brunell, KCRA (Sacramento, CA), Apr 9, 2017

How to reduce electromagnetic fields created by electricity
Meredyth Censullo, KFLA (Tampa, FL), Mar 31, 2017

Cell Phone Cancer Debate Heats up With Document Release
Scott Budman, NBC Bay Area, Mar 3, 2017

NBC Southern California, Mar 3, 2017
State health officials accused of keeping cell phone dangers secret
Vicki Gonzalez, KCRA (NBC Sacramento), Mar 3, 2017

Cell phones safe? Flap in California revives debate Jeff Gillan, KSNV (NBC Las Vegas), Mar 3, 2017
Researchers: Long-term cell phone use may increase your risk for a brain tumor
Bob Segall, WTHR (Indianapolis, IN), Feb 21, 2017


Special Report: The Facts about Smart Meters
Joy Wang, WILX (Lansing, MI), Feb 12, 2017

Board denies proposed Greendale cell tower
Rebecca Klopf, WTMJ (Milwaukee, WI), Feb 7, 2017

Radiation-blocking underwear and five other crazy CES gadgets
Matt Granite, WGRZ (Buffalo, NY), Jan 7, 2016
Rat Study Launches New Debate over Cell Phone Radiation and Cancer
Rachel Polansky, WBBH (Fort Myers, FL), Dec 19, 2016

13 Investigates cellphones and cancer: Is the risk real?
Bob Segall, WTHR (Indianapolis, IN), Nov 14, 2016

Are Kids at Risk? Scores of Chicago-Area Schools Allow Cell Towers on their Buildings, Grounds
Phil Rogers, Katy Smyser, NBC Chicago, Oct 3, 2016

Parents Fight Plans for Cell Tower at Virginia Elementary School
David Culver, NBC Washington (DC), Sep 21, 2016

Berkeley Cellphone Ordinance Challenged in Appeals Court
Mark Matthews & Stephen Ellison, NBC Bay Area (San Jose, CA), Sep 13, 2016
Montgomery County Residents Shocked by Proposal to Build Cell Towers in Front of Homes Jackie Bensen, NBC Washington (DC), Sep 2, 2016

Government study links cell phone radiation to cancer
Maggie Fox, NBC News, May 27, 2016

Piper Glenn residents cite eagles in cell tower fight
Bill McGinty, WCNC (Charlotte, NC), Apr 7, 2016

Berkeley's 'Right to Know' Cell Phone Radiation Warning Ordinance Now in Effect
Jean Elle, NBC Bay Area (San Jose, CA), Mar 21, 2016

BGE makes case for another rate hike
George Lettis, WBAL (Baltimore, MD), Mar 18, 2016

North Kingstown teacher says she's being fired because she believes WiFi is health hazard
Brian Crandall, WJAR (Providence, RI), Feb 23, 2016

Kids Face Potential Radiation Danger Using Cell Phones
Shanay Campbell, WSAV (Savannah, GA), Nov 6, 2015

Scientists: Effects of cell phone radiation on kids is cause for concern
Ashley Daley, WMBF (Myrtle Beach, SC), Nov 6, 2015

Pediatricians express concern over growing cellphone use, radiation exposure for children
Meghan McRoberts, WPTV (West Palm Beach, FL), Nov 6, 2015

Potential radiation danger to kids using cell phones

Shannon Wolfson, KXAN (Austin, TX), Nov 5, 2015

Pediatricians' new warning: Limit children's exposure to cellphones
Danielle Dellorto, NBC Today Show, Nov 5, 2015


Report Examines Cell Phone Radiation
Jean Elle, NBC Bay Area, Sep 24, 2015

Group wants cell towers gone
Barry Sims, WBAL (Anne Arundel County, MD), Sep 22, 2015

Neighborhood fights possible new cell tower on church property
Forrest Sanders, WSMV (Nashville, TN), Jul 30, 2015

Residents protest cell tower installation citing health concerns
Sophia Kunthara and Melissa Etezadi, NBC Southern California, Jul 20, 2015


Wireless companies sue Berkeley over cellphone radiation warning ordinance
Tamara Palmer, NBC Bay Area (San Jose, CA), Jun 8, 2015

Berkeley approves "Right to Know" cell phone radiation warning ordinance
Jean Elle, NBC Bay Area
(San Jose, CA), May 12, 2015

West Seattle residents protest new cell phone antennas
Alex Rozier, KING (Seattle, WA), May 7, 2015

Bay Area documentary "Mobilize" examines cell phone dangers
Jean Elle, NBC Bay Area
(San Jose, CA), Mar 28, 2015


ABC News
Proposal would require new cell towers to be at least 1,500 feet away from schools in Williamson County
Kendall Ashman, WKRN (Nashville, TN), Jan 30, 2024
TN parents call for removal of cell tower near elementary school
Kendall Ashman, WKRN (Nashville, TN), Nov 14, 2023
Parents outraged over cell tower being built next to Florida elementary schoolKristina Watrobski, KATV (Little Rock, AR), Apr 20, 2023
Pasco County parents fighting to stop cell phone tower from being built next to elementary schoolEric Waxler, WFTS (Tampa Bay, FL), Apr 18, 2023
Detroit parents call for tests to determine radiation exposure from cell antennas on schoolsKim Russell & Johnny Sartin, WXYZ (Detroit, MI), Apr 6, 2023
Is the cellphone tower on top of a Wyandotte school harmful? Here's what an expert saysKim Russell, WXYZ (Detroit, MI), Mar 29, 2023

T-Mobile addresses concerned parents about the cell tower in WyandottePeter Maxwell, WXYZ (Detroit, MI), Mar 22, 2023
Wyandotte superintendent: It would cost 'millions' to break cell tower contract
WXYZ (Detroit, MI), Mar 21, 2023
Wyandotte parents sound off over 5G cell tower at elementary schoolBrett Kast, WXYZ (Detroit, MI), Mar 14, 2023
Cellphone tower being built on elementary school roof concerns parents in Wyandotte
Kim Russell, WXYZ (Detroit, MI), Mar 1, 2023
Englewood neighborhood outraged by city's plan to build 5G tower in front of home
Bayan Wang, KCDO (Denver, CO), Jul 7, 2022
Neighbors concerned about 5G cell tower in GilbertAshley Paradez, KNXT (Phoenix, Az), Aug 11, 2021
Verizon cell tower in limbo after Madison County board takes no action
Caitlyn Penter, WLOS (Asheville, NC), June 7, 2021


Houston homeowners upset over not being notified of 5G box placement
Nick Natario, KTRK (Houston, TX), Jan 27, 2021

More 5G woes: Poles installed feet away from Pensacola resident's front door
Rebekah Castor, WEAR (Pensacola, FL), Jan 21, 2021
Residents outraged as more 5G antennas are approved in Pensacola
Rebekah Castor, WEAR (Pensacola, FL), May 10, 2020

5G technology brings potential and tension
Kylie McGivern, WFTS (Tampa Bay, FL), Mar 30, 2020

Cell tower near elementary school sparks concern
Lindsay Pena, Zac Self, KGTV (San Diego, CA), Feb 27, 2020

Concerns over health lead to cellphone tower protest in Camas
Joe English, KATU (Portland, OR), Feb 5, 2020

Concerns over 5G tech in Jacksonville as City approves new regulations Alexander Osiadacz, WJXX and WTLV (Jacksonville, FL), Dec 11, 2019 (also NBC)

Montgomery Co. considers 5G, but health concerns have residents protesting
Jay Korff, WJLA (Washington, DC), Nov 19, 2019

Carmel homeowners raise concerns over 5G small cell towers
Kara Kenney, WRTV (Indianapolis, IN), Oct 4, 2019

Can 5G cell phone antennas impact your pacemaker?
Jennifer Munoz, WEAR (Pensacola, FL), Sep 27, 2019

Small Cell tower and 5G concerns and benefits
Andrew Donley, WBMA (Birmingham, AL), Sep 23, 2019

Mystery towers going up all over Cincinnati area: Homeowners worry about possible health effects
John Matarese, WCPO (Cincinnati, OH), Sep 20, 2019

5G could come with health risks, critics say
Sharyl Attkisson, WBFF (Baltimore, MD), Sep 15, 2019

Concern, opposition grows to 5G in Colorado Springs
Scott Harrison, KRDO (Colorado Springs, CO), Aug 28, 2019

Los Altos man leads effort to keep AT&T wireless nodes away from daughter's bedroom, neighborhood
Amanda del Castillo, KGO (San Francisco, CA), Jul 11, 2019
Protesters in WDSM for new Verizon 5G installations Adam Cron, KCWI (Des Moines, IA), Jun 14, 2019
Denver Public Schools faces backlash from parents about placement of cell towers on schools
Russell Haythorn, KMGH (Denver, CO), Jun 7, 2019


West Boca tower proposal meets resistance at zoning meeting
Ron Burke, WPBF (Boca Raton, FL), Jun 7, 2019


Albany residents debate safety of 5G
WNYT (Albany, NY), May 17, 2019

Protesters rally against 5G in San Diego
KGTV (San Diego, CA), May 15, 2019

Local group rallies in Asheville as part of national protest over 5G technology
WLOS (Asheville, NC), May 15, 2019

Group rallies against 5G roll out
KDRV (Medford, OR), May 15, 2019


'On Your Side' West Jacksonville community opposed to cell phone tower
Kenneth Amaro, WTLV (Jacksonville, FL), Mar 29, 2019
5G speeds: National City seeks public input for Small Cells Installation
Rina Nakano, KGTV (San Diego, CA), Mar 12, 2019
5G wireless technology comes with big promises, but city of Portland has big concerns
Keaton Thomas, KATU (Portland, OR), Mar 11, 2019

5G fears: Homeowners worry about mini towers in street
John Matarese, WCPO (Cincinnati, OH), Feb 8, 2019
Local group protests 5G cell tower in Eugene
Madison Glassman, KEZI (Eugene, OR), Jan 26, 2019

5G Fight: Greendale residents don't want cell towers in their yards
Caroline Reinwald, WISN (Milwaukee, WI), Jan 4, 2019
Some Duke Energy customers claim smart meters are making them sick
Tonya Simpson & Diane Wilson, WTVD (Raleigh, NC), Oct 1, 2018
The health effects with 'smart' utility meters
Jennifer Emert, WLOS (Asheville, NC), Sep 27, 2018
Smart meter workshop met with protesters
KDRV (Medford, OR), Sep 22, 2018

Some San Mateo residents upset over planned installation of Verizon antennas on utility poles
Vic Lee, KGO (San Mateo, CA), Sep 20, 2018
Concerned Talent citizens say new smart meters are unhealthy KDRV (Medford, OR), May 31, 2018

Verify: Do diode stickers protect you from cellphone radiation?
WVEC (Norfolk, VA), Apr 18, 2018

Are mini-cell phone towers a health risk in your neighborhood?
WJLA (Washington, DC), Apr 6, 2018
New study on link between cancer and cell phones Tiffany Neely, KAIT (Jonesboro, AR), Apr 3, 2018
Does cell phone radiation cause cancer? Scientists gather at RTP to discuss
WTVD (Raleigh, NC), Mar 28, 2018

The potential health risks of cell phones, explained
Sam Benson Smith & Zak Dalheimer, KESQ (Thousand Palms, CA), Feb 15, 2018

New warning links cell phones to health risks
Good Morning America / ABC Network News, Dec 18, 2017

Ask Dr. Nandi: California sets guidelines to limit cell phone radiation exposure
WXYZ-TV (Detroit, MI), Dec 18, 2017

Hillsborough homeowners fight proposed cell towers
Katie Marzullo, KGO (San Francisco, CA), Dec 9, 2017

Can mobile phone use lead to health problems?
Abigail Elise, WISN (Milwaukee, WI), May 14, 2017

Long Island Residents Outraged by Cellphone Towers in Front of Homes
N.J. Burkett, WABC (New York, NY), May 11, 2017

Cell phones and cancer, is there a connection?
Kerri O'Brien, WRIC (Richmond, VA), Mar 20, 2017

CA Health Dept. Releases Report Saying Cellphone Use May Cause Cancer
Lyanne Melendez, KGO (San Franciscom CA), Mar 3, 2017


Parents fight plan to put cell tower near playground at Virginia elementary school
Richard Reeve, Jay Goldberg, WJLA (Washington, DC), Sep 28, 2016

San Jose residents fight cellphone tower proposal over radiation concerns
Lisa Amin Gulezian, KGO (San Francisco, CA), Aug 13, 2016

Alpine residents outraged over EMF levels from Sunrise Powerlink
Ariel Wesler, KGTV (San Diego, CA), Feb 24, 2016


Notre Dame researchers making a faster and safer phone
Brandon Pope, WBND (South Bend, IN), Feb 5, 2016

New concerns over kids and electronics
Shannon Murray, KVUE (Austin, TX), Dec 3, 2015

Parents upset over cell tower possibly being installed near Weho school
Mayde Gomez, KABC (Los Angeles, CA), Dec 1, 2015

City leaders, neighbors raise concerns about cell towers
Kayla Moody, WHAS (Louisville, KY), Oct 28, 2015

Cell phone industry sues city of Berkeley
Lyanne Melendez, KGO (San Francisco, CA), Aug 20, 2015

Alki Beach residents protest plan for cell antennas near school
Theron Zahn, KOMO (Seattle, WA), May 7, 2015

Lake Ronkonkomo residents speak out against proposed cell tower in neighborhood
Kristin Thorne, WABC (New York, NY), Apr 29, 2015

Workers say cell tower sites putting them at risk
Cristin Severance, KGTV (San Diego, CA), Mar 19, 2015 (updated Mar 24, 2015)

Ann Arbor family has power shut off by DTE in dispute over installing new SMART meter on their home
Dave LewAllen, WXYZ (Detroit, MI), Mar 18, 2015

Smart meters' slammed at House committee hearing WZZM (Lansing, MI), Dec 2, 2014

Man claims OUC's smart meter made him sick, files federal lawsuit WFTV (Orlando, FL), Dec 2, 2014

Alamo Heights residents voice concerns over smart readers KSAT (San Antonio), Sep 22, 2014 (updated Sep 23, 2014

3 Reasons Not to Sleep With Your Phone in the Bed
Camille Chatterjee, ABC News, Aug 5, 2014

City pushes for cancer warning stickers on cell phones
WCVB (Boston), Jul 15, 2014

Berkeley City Council proposes ordinance to get warning labels on cellphones
Tiffany Wilson, KGO (San Francisco), Jul 15, 2014


Fox News

EMF & EMR – Invisible Electromagnetic Radiation Lurking in Most of Our Homes

Fox 24 (Charleston, SC), Oct 6, 2023

Detroit-area superintendent resigns over 5G antenna protests
Fox News Channel (Associated Press), Apr 6, 2023
Director of scientific nonprofit calls for law changes amid controversy over 5G tower on Wyandotte schoolBrandon Hudson & Amber Ainsworth, Fox 2 Detroit (Detroit, MI), Apr 5, 2023

Scientist says T-Mobile cell equipment on top of Wyandotte school is a health danger
Brandon Hudson & David Komer, Fox 2 Detroit (Detroit, MI), Mar 24, 2023

Residents protest cell towers in Montgomery County
Sierra Fox, Fox 5 DC (Washington, DC), Oct 11, 2022
Cell phones and cancer: New UC Berkeley study suggests cell phones sharply increase tumor risk
Marla Tellez, KTTV (Los Angeles, CA), July 7, 2021
Hold your cell phone away from your body: Research links cell phones to tumors
André Senior, KTVU (Oakland, CA), July 8, 2021


San Jose neighbors oppose 5G cell equipment installed feet from homes
Brooks Jarosz, KTVU (Oakland, CA), Apr 21, 2021

Hoosiers fight against 5G towers near homesKayla Sullivan, WXIN (Indianapolis, IN), Dec 28, 2020
5G internet antennas being installed in East GR, not everyone happy about it
Michael Martin, WXMI (East Grand Rapids, MI), Aug 31, 2020

Edmond group to voice concerns about 5G towers
KOKH (Oklahoma City, OK), Feb 25, 2020

Group plans to share 5G tower concerns with Edmond city council
William Maetzold, KOKH (Oklahoma City, OK), Feb 19, 2020

Tech companies begin installing 5G poles in New Orleans
Rilwan Balogun, WVUE (New Orleans, LA), Jan 23, 2020

Parents concerned over potential cell tower at local elementary
Jeremy Pierre, WHBQ (Memphis, TN), Jan 14, 2020

Verizon launches 5G service in Boston, but what are the potential drawbacks?
Jim Morelli, WFXT (Boston, MA), Nov 19, 2019

La Mesa residents raise concerns over 5G towers
Justina Myers, KFWB (San Diego, CA), Oct 22, 2019

5G warning posters placed around Downtown Orlando
Matthew Trezza, WOFL (Orlando, FL), Jun 14, 2019

San Francisco is resisting 5G, calling it 'ugly' and 'dangerous'
Brooke Crothers, Fox News network, Jun 1, 2019

Locals plan rally against 5G rollout
KMVU (Medford, OR), May 15, 2019

Parents upset about possible cell tower near Germantown elementary school
Jacque Masse, WHBQ (Memphis, TN), Mar 18, 2019


Are Apple AirPods putting you at risk for cancer?
Dr. Marc Siegel, Tucker Carlson Tonight / Fox News Network, Mar 13, 2019
STL Moms: Kids cellphone safety KTVI, (St. Louis, Mo), Mar 8, 2019

Town of Union Residents "Devastated" Over Possibility of Cell Tower in Neighborhood
Amanda Pitts, WICZ (Binghamton, NY), Jun 4, 2018

Parents worry cellphone tower could expose children to radiation
Keagan Harsha, KDVR (Denver, CO), Apr 23, 2018


Montgomery County residents fighting rezoning to allow new 5G cell towers
WTTG (Washington, D.C.), April 4, 2018

Could your cell phone be endangering your health?
Jeff Abell, WBFF (Baltimore, MD), Feb 20, 2018

Opposition to cell towers in Hillsborough
Tom Vacar, KTVU (Oakland, CA), Dec 19, 2017

Health officials warn sleeping near cell phone could cause cancer and infertility
Darren Sweeney, WJW (Cleveland, OH), Dec 18, 2017
Family chooses to live with no power rather than a DTE Smart Meter
Hilary Golston, WJBK (Detroit, MI), Nov 9, 2017

Ashland residents meet to discuss potential health risks of wireless radiation
Ted Daniel, WFXT (Boston, MA), Jun 20, 2017

Parents of Cancer Survivors Still Waiting for School District's Response Regarding Cell Phone Tower
Eric Rucker, KTXL (Sacramento, CA), Jun 19, 2017

After 2 Ripon Children Diagnosed with Cancer, Kids and Parents Protest Cell Tower on School Grounds
Kay Recede, KTXL (Sacramento, CA), May 31, 2017
More than 400 MTEMC customers reject company's request to install smart meters
Jeremy Finley, WBRC (Birmingham, AL), May 23, 2016

Controversy surrounding EMF exposure: Do wireless devices pose dangers?
Danielle Miller, KSAZ (Phoenix, AZ), Feb 22, 2016

Cell phones and fertility
Dr. Devi Nampiaparampil, WNYW (New York City, NY), Feb 21, 2016

Health concerns over Wi-Fi technology exposures in schools
Laura Evans, WTTG (Washington, DC), Feb 15, 2016

Cell Phone Dangers?
Stacey Delikat, WNYW (New York City, NY), Jan 16, 2016

High Point neighbors speak out against cell tower project
Jasmine Spencer, WGHP (High Point, NC), Dec 8, 2015

More than 400 MTEMC customers reject company's request to install smart meters
Jeremy Finley, WBRC (Franklin, TN), Nov 23, 2015

Pediatricians express concern over growing cellphone use, radiation exposure for children
WFLX (West Palm Beach, FL), Nov 6, 2015

Scientists: Effects of cell phone radiation on kids is cause for concern
Ashley Daley, Fox Carolina News (Greenville, SC), Nov 6, 2015
Mount Tabor neighbors fight cell phone tower proposal
KPTV (Beaverton, OR), Jun 4, 2015 (updated Jul 2, 2015)

Berkeley passes cell phone safety ordinance
Amber Lee, KTVU (Oakland, CA), May 12, 2015

How to spot potential radiation hiding in your home

Fox News (national), Feb 1, 2015

Experts: Why wearable tech could pose health risks
Brooke Crothers, Fox News (national), Oct 20, 2014


CNN

Cell phone radiation study finds more questions than answers
Jacqueline Howard, CNN, Feb 7, 2018
Electrosensitivity, Vital Signs with Dr. Sanjay Gupta, Oct 24, 2017 (also CNN International)
Part 1: Welcome to the National Quiet Zone Part 2: Wireless Exposure Part 3: Living in the National Quiet Zone
Cell phone radiation increases cancers in rats, but should we worry? Carina Storrs, CNN, May 27, 2016

Half of teens think they're addicted to their smartphones Kelly Wallace, CNN, May 3, 2016


Other TV News


Carmel (NJ) residents win legal battle against cellphone tower constructionStaff, News 12 (Edison, NJ), Jul 25, 2022
5G Battle: midtown residents host block parties, rallies and bake sales to stop towers from going upHanna Tiede, KOLD (Tucson, AZ), Jun 21, 2021
Neighborhood residents say Pittsfield cell tower causing health concernsMatt Ristaino, Spectrum News 1 (Worcester, MA), May 13, 2021
Neighborhood residents say Pittsfield cell tower causing health concernsNeighborhood residents say Pittsfield cell tower causing health concernsNeighborhood residents say Pittsfield cell tower causing health concernsCouple fights to prevent installation of cell tower outside their Long Beach homeKacey Montoya, KTLA (Los Angeles, CA), May 8, 2021

North Shore residents raise concerns about proposed military missile radar Nicky Schenfeld, KHON (Kahuku, HI), Apr 10, 2021
Some residents of Jacksonville townhomes concerned over 5G towerCorley Peel, WJXT (Jacksonville, FL), Jan 21, 2021
Mahopac residents concerned with proposed cellphone tower project
News 12 (Westchester, NY), Aug 12, 2020

White Plains residents make petition against 5G antennas near homes, schools
News 12 (Westchester, NY), Jul 19, 2020

Activists protest against 5G towers
WDVM (Hagerstown, MD), May 15, 2019


Germantown residents protest cell phone tower installation near elementary school WMC (Memphis, TN), Mar 18, 2019

Cell Phone Safety for Kids
Tonya Harris, WISH (Indianapolis, IN), Mar 5, 2019

Is 5G Technology Dangerous?
Stephanie Whitfield, KHOU (Houston, TX), Feb 11, 2019

Local Neighborhood Concerned for Possible AT&T Tower
Dan Garrett, KSNT (Topeka, KS), Feb 4, 2019

U.S. Sen. Blumenthal briefing on concerns with possible health risks posed by 5G wireless technology
Congressional news briefing, Connecticut Network (Hartford, CT), Dec 3, 2018
Senator Blumenthal pushes to investigate link between 5G wireless tech and cancer Hector Ramirez, WTNH (New Haven, CT), Dec 3, 2018
Controversy in Ozark over where a cell phone tower will be built Brandon Berg, KY3 (Springfield, MO), Nov 16, 2018
5G wireless will provide faster cellular service. But how safe is it? Sara Girard, WINK (Fort Myers, FL), Nov 7, 2018
Debate continues over 5G wireless towers placed in residential areas Shennikia Grimshaw, WDVM (Montgomery County, MD), Sep 25, 2018
Concern grows over cellphone towers on Crown Heights building
News 12 Brooklyn (Brooklyn, NY), Sep 24, 2018

Some Danville residents express radiation concerns over building of small cell towers
Gabe Slate, KRON, (San Francisco, CA), Apr 17, 2018

Homeowners file lawsuit over potential wireless transmitter health risks
Shari Einhorn, News 12 Long Island, NY, Oct 19, 2017
Allergic to Wi-Fi: Woman helps locals suffering from electromagnetic radiation sensitivity WGN (Chicago, IL), Jun 6, 2017
WQAD (Moline, IL), Jun 6, 2017

Can Wireless Technology Make You Sick?
Azia Celestino, Channel One News, May 18, 2017

Cell Phone Radiation Warning Law Causes Controversy
Azia Celestino, Channel One News, May 17, 2017

No Wi-Fi or cellphones allowed in the 'Quietest Town in America'
Julie Unruh, WGN (Chicago, IL), May 15, 2017
The secret inside your cellphone
CBC Marketplace, Canadian Broadcasting Corporation, Mar 24, 2017

Berkeley's Cellphone Crusade
The National, Canadian Broadcasting Corporation, Mar 23, 2017

California Department of Public Health releases draft of document warning against cellphone radiation
Gabe Slate, KRON (San Francisco, CA), Mar 3, 2017

Smart meter opt out fees could be nixed in legislative session

Emily Ikeda, WHAG (Montgomery County, MD), Feb 2, 2017

City Light takes feedback on opt-out for smart meters
Joel Moreno, KOMO (Seattle, WA), Aug 12, 2016

Special Report: The facts about smart meters
Joy Wang, WILX (Lansing, MI), Feb 12, 2016

Very easy changes could limit your exposure to cell phone radiation
Jenny Day, San Diego 6 News, Nov 6, 2015

Cell phones believed to cause sleep problems
KXII (Denison, TX), Jun 26, 2014
Electromagnetic Radiation Safety
29.2.2024 00:16

Tips to Reduce Your Wireless Radiation Exposure


To learn why it is important to reduce your exposure to wireless radiation see my Welcome to EMR Safety page for an overview of the health risks including presentations, radio interviews, and podcasts.
This page contains safety tips from various organizations on how to reduce your exposure to wireless radiation from cell phones, cordless phones, laptops, tablets, Wi-Fi routers, and other wireless technology.

To download the following one-page handout click on the link: https://bit.ly/wirelesstipsheet


https://bit.ly/wirelesstipsheet
---

https://bit.ly/3E0nezL

---

Protecting kids from wireless radiation in school and at homeEnvironmental Working Group, November 2022
EWG's big picture recommendations for wireless devices
  • Default to airplane mode.
  • Increase distance from devices.
  • Turn off when not in use.
  • Used wired devices if possible.

Children are almost constantly exposed to wireless radiation, starting as early as the first weeks of life. As they get older, that exposure grows every day, thanks to the widespread use of smartphones, laptops and other wireless devices in the classroom and at home.

Wireless devices radiate radiofrequency electromagnetic fields. Research has raised concerns about the health risks of exposure to this radiation, including harm to the nervous and reproductive systems, and higher risk of cancer. Cell phone radiation was classified a "possible carcinogen" in 2011 by the International Agency for Research on Cancer, part of the World Health Organization. The agency said human epidemiological studies showed a link between higher risk of a type of malignant brain cancer and cell phone use.

At home

Parents and caregivers can exert more control over their kids' wireless radiation exposure at home than at school, and have more latitude to try new ways of using devices.

Getting started

To begin, inventory your home's electronic devices. Consider smart speakers, cordless phones and mouses, gaming consoles, cell phones, wireless security systems and electric alarm clocks, among other types of technology. Even things you might not think emit electromagnetic radiofrequency radiation, like Fitbits and other wearable fitness devices, are a source of wireless radiation exposure and best for young kids to avoid.

Increase distance

The first, easiest-to-implement option is to increase the distance between your child and wireless devices in the home. The more distance, the less exposure.

Wired headphones or the speaker mode on a cell phone can put distance between the device and kids' bodies. They should carry the device in a backpack or bag, not a pocket.

When no one is actively using the device, make sure it's in airplane mode. Otherwise, the device will keep seeking the "signal" – it will continue trying to communicate with nearby cell towers, producing unnecessary radiation.

Another simple but important fix: Locate routers and cordless phone base stations – the worst radiation offenders – away from where your kids sleep, study and play. See if you can lower your Wi-Fi router's output. It may be set to "High" as a default, which could create more intense wireless radiation output than anyone in your household needs.

Choose wired

To reduce radiation exposures significantly, many experts recommend using wired devices whenever possible. Make replacing wireless headphones with wired your first step then, over time, choose auxiliary devices that plug in or are battery-powered, including keyboards, mouses and microphones. Wireless earbuds also emit radiofrequency radiation, so limit the use of such devices, especially for children and youth.

Here are some other ways to reduce exposure to electromagnetic radiation from wireless.

The big picture

  • Aside from the obvious devices (phones, tablets, computers, game consoles), think twice about wireless digital baby monitors and other wireless or virtual devices. If used, such devices and appliances should be kept away from bedrooms and other areas where children sleep.
  • Shut off all wireless devices, including your router, at night and when they're not in use.
  • Consult this checklist for a low-electromagnetic field, or EMF, set-up published by Environmental Health Trust if you or a family member spend a lot of time at a computer.

At night

  • Strongly encourage your child not to sleep near their wireless gadgets. If this isn't possible – and let's face it, with teenagers, you may not succeed at wresting the phone or tablet away – try to convince them to place it away from their head instead of under a pillow.
  • Even better, keep electronics out of bedrooms as much as possible, or at least away from beds. This includes TV screens and audio speakers.
  • Use an old-fashioned electric or battery alarm clock that doesn't connect to Wi-Fi. And get one for your children if they claim to need their cell phone so they can get up in the morning.
  • Move beds away from utility meters or large appliances, which also emit radiation, even if they're on the other side of a wall.

Studying, playing and communicating

  • Experts recommend starting a child's cell phone use as late as practical, considering the family and educational context and needs of each child. The younger kids are, the more vulnerable their bodies are to potentially harmful effects of wireless radiation exposure.
  • Encourage your children to use a device's speaker function or wired earbuds when they want to use their phone to talk.
  • Download movies and shows instead of streaming them, then watch in airplane mode. Even better, watch on a wired computer or screen.
  • Teach and encourage your children to use their laptop or tablet placed on a table or another hard surface, away from their bodies.
  • Get wired – consider getting cords and cables for your kids' game console, and turning it off when your children finish playing.

Powering down

  • Put phones in airplane mode as much as possible when they are near children, with both Wi-Fi and Bluetooth turned off. If they (or you) want to put a phone in a pocket or backpack, turn it off first.
  • Also, power devices down when you're in transit, like on a plane, train, bus or in a car.
  • Get to know when radiation emissions are highest – streaming video, traveling in a car, or when the signal is poor – and do what you can to help your child avoid these scenarios. (To see how strong or weak the signal is, check how many bars it has.)
At school

Parents and caregivers don't have nearly as much control at school over how much their child is exposed to wireless radiation as they do at home. And with technology ever more prevalent in educational settings, chances are kids are close to a variety of devices all day.

Nearly half of U.S. schools report having a computer for every child, according to a Department of Education study. Another 37 percent have a computer for each child in some age groups. In some cases, kids may take the device home with them for long or short periods. The survey also said 70 percent of teachers use technology in the classroom.

It's tough to shield your child from wireless radiation exposure entirely. But you can take steps to lower their exposure based on advice published by experts. Start by approaching school administrators with your concerns. Learn your school or district's cell phone policy. If none exists, request that a committee be formed to develop a policy and plan trainings for teachers about safe technology use.

Here are a few ideas teachers can implement in the classroom or that schools and school districts can use. The gold standard: Whenever possible, use wired connections for laptops, tablets, interactive white boards, printers and other devices.

If a wired school network isn't feasible:

  • Emphasize keeping devices off and turning them on only when in use – and issue frequent reminders.
  • Students' personal electronic devices, like cell phones, should be turned off or in airplane mode during school.
  • Make sure the school policy on wireless device use is posted in classrooms.
  • Ask school districts to equip new facilities with wired technology.
  • Many experts recommend setting school Wi-Fi routers to the lowest possible level that still allows educational content access, as well as turning off routers when they're not in use.
Wireless technology use during the pandemic

From the start of the coronavirus pandemic, wireless technology became the main path for accessing education and participating in virtual classrooms for kids and families in the U.S. and across the globe. In 2020, a survey found nearly half of 2- to 4-year-olds and about two in three kids ages 5 to 8 already owned their own mobile devices, a tablet or smartphone – and that was before the Covid-19-related school closures prompted desperate working parents nationwide to employ wireless devices as babysitters and educators.

That's many kids with constant access to wireless devices – and also exposed to the health risks of wireless radiation. Parents have taken note of these potential harms. A European citizens group coalition in March called for simple steps to protect kids by swapping wireless for cables in places where children spend time and educating the public about the dangers of exposure.

Earlier this year, EWG together with more than 22,000 people petitioned federal regulators to establish stricter standards for kids' exposure to wireless devices' radiofrequency radiation.

For more information

To find additional resources, advocacy guidance, tip sheets and other useful suggestions, consult the websites of one of these organizations:

  • The Environmental Health Trust's "Wi-Fi in Schools Toolkit" offers a wealth of resources, including fact sheets and tip sheets, background on the science of EMF exposure, and guidance for parents, teachers and schools. It also has more than a dozen downloadable and printable posters on exposure and sleep, children's development, and the effects of EMF exposure on breast cancer risk and male reproductive health.
  • An Environmental Health in Nursing textbook downloadable chapter on EMF, courtesy of the Alliance of Nurses for Healthy Environments, contains useful information, like a detailed explanation of the health impacts of EMF exposure, advocate organizations' tip sheets, and other valuable resources.
  • The American Academy of Pediatrics issued recommendations about EMF exposure.
  • The Massachusetts Breast Cancer Coalition offers a downloadable backgrounder for students and educators on "Cell Phones, Wireless and Your Health," which includes suggested activities to use in the classroom and as homework. It includes a list of additional websites you may choose to consult.
https://www.ewg.org/news-insights/news/2022/11/protecting-kids-wireless-radiation-school-and-home
---
Safety Recommendations for Children Who Use Digital Technologies to Study at Home
Scientific Research Institute of Hygiene and Children's Health in the Russian Ministry of Health and the Russian National Committee on Non-Ionizing Radiation Protection (RusCNIRP)March 25, 2020
(The recommendations were translated from Russian using Google's translation tool and then edited for easier reading on the Electromagnetic Radiation Safety website.)
The following recommendations for distance learning at home are intended for children (up to 18 years of age) and their parents and grandparents and anyone who helps children study at home using digital technologies.

1. Children under 18 years of age who study at home should primarily use personal computers and laptops connected to the Internet via a wired network. When using a wireless network, the distance from the Wi-Fi router to the student should be at least 5 meters (16 feet).

2. The keyboard of the computer or laptop must be disinfected with an antiseptic every day before starting work. The monitor also needs to be treated with an antiseptic agent.

3. Before using the keyboard wash the hands of both the child and the adult who helps him or her.

4. To reduce the risk of visual impairment and musculoskeletal system disorders, provide a child working at a computer or laptop with a convenient workplace (the height of the table and chair should correspond to the height of the child), to exclude the illumination of the monitor screen.

5. The main light source at the child's workplace should be located on the side of the screen (not behind the screen and not from the back of the person working with the screen). The brightness of the source should approximately correspond to the brightness of the screen.


6. The use of tablets for distance learning at home is acceptable for adolescents over 15 years old. Before using the tablet, you need to wash your hands and wipe the screen with a disinfectant (wet towel). The location of the Wi-Fi point should be at least 5 meters (16 feet) from the student's workplace. The tablet is placed on the table on a stand at an angle of 30 degrees, the distance from the screen to the pupil's eyes is at least 50 centimeters (20 inches). Do not use a laptop or tablet on your lap, in your hands, lying down and the like.
30 degree angle
7. For all age groups: completely avoid use of smartphones for educational purposes (reading, searching for information)
8. For all age groups: for reading or completing tasks, mainly use ordinary books and notebooks.

9. Children under 6 years old must not use any computer equipment for educational purposes at home.

10. Children 6 to 12 years of age should minimize the use of computer equipment for educational purposes at home. If it is necessary to use it, the total duration of all types of on-screen activities should not exceed 2 hours per day (including watching TV). The class schedule should be based on a one-to-three schedule for 6 to 8 year olds (for every 10 minutes of work 30 minutes of rest) and one-to-two schedule for ages over 8 and up to 12 years (for every 10 minutes of work - 20 minutes of rest).

11. For children 12 to 18 years of age, the following mode of computer use is recommended: "one to two" for 12 to 15 year olds (for every 30 minutes of work - 60 minutes of rest) and "one to one" for children for 16 to 18 year olds (for every 45 minutes of work - 45 minutes of rest).


The total duration of all types of screen activities for children 12 to 18 years of age, including watching TV, should not exceed 3.5–4 hours per day.

12. For the prevention of visual fatigue, perform gymnastics for the eyes during the break; for the prevention of general fatigue - a warm-up (tilts, body turns, squats, etc.)

13. If necessary to use headphones limit their continuous use: no more than an hour at a volume of not more than 60%.

14. Ventilate the room where the students study, before the start of classes (at least 15 minutes) and after each hour of work.

15. Do not use tablets and smartphones for educational purposes outdoors (in the park, on the playground and similar places).


The above recommendations are based upon research from multicenter studies on children's health and safety while using digital educational technologies, materials from the Scientific Research Institute of Hygiene and Children's Health "NRCM of Children's Health," and the Russian National Committee for Protection against Non-Ionizing Radiation, as well as recommendations from the World Health Organization and the best safety practices for children's digital educational environments.
--

California Department of Public Health


In December, 2017, the California Department of Public Health captured worldwide attention when it published an official cell phone safety document,"How to Reduce Exposure to Radiofrequency Energy from Cell Phones." The three-page document is available at https://bit.ly/CDPHguidance.
In March, 2017, before the judge could finalize her ruling in a lawsuit we filed under the Public Records Act, the California Department of Public Health released an unofficial cell phone safety document, "Cellphones and Health," dated April, 2014. The document was originally written in 2009 but never released to the public. More information is available on my web site.
To download 3-page document: https://bit.ly/CDPHguidance
More Safety Tips
American Academy of Pediatrics. "Cell Phone Radiation & Children's Health: What Parents Need to Know." https://bit.ly/AAPrecs
Athens Medical Association. "16 Rules to Reduce Wireless Radiation Exposure." https://bit.ly/2pOt2HG

Baby Safe Project. "What You Need to Know about Wireless Radiation and Your Baby."
bit.ly/BabySafeEMR

City of Berkeley. Berkeley Cell Phone "Right to Know" Ordinance.

Canadians for Safe Technology. "Wireless Safety Tips. https://bit.ly/C4STtips

Connecticut Department of Public Health. "Cell Phones: Questions and Answers about Safety." https://bit.ly/cellphoneFAQsConn

Consumer Reports. "Cell Phone Radiation Warnings." https://bit.ly/CRwarnings

Electrosensitive Society. "How to reduce your exposure: Electromagnetic hygiene in 12 easy steps. https://bit.ly/ESsafetytips

Environmental Health Trust. "10 Tips to Reduce Cell Phone Radiation." https://bit.ly/EHT10tips

Environmental Working Group. "EWG's Guide to Safer Cell Phone Use." https://bit.ly/EWGcellphone

German Federal Office for Radiation Protection. Recommendations from the BfS for making telephone calls on mobile communications. https://bit.ly/BfScalls

German Federal Office for Radiation Protection. Smartphones and tablets--tips to reduce radiation exposure. https://bit.ly/GFRPtips

International Commission on the Biological Effects of Electromagnetic Fields. "Safety Tips on Reducing Wireless Radiation Exposure." https://bit.ly/ICBE-safety-tips

New Jersey Education Association. "Minimize Health Risks from Electronic Devices." NJEA Review. Sept 2016. bit.ly/NJEAtips

Physicians for Safe Technology. "Safety Tips for Wireless Devices." bit.ly/MDsafeTechTips

Prevent Cancer Now, "11 Ways to Use Your Cell Phone More Safely." https://preventcancernow.ca/11-ways-to-use-your-cell-phone-safely/

Vienna Medical Association. "Mobile Phone Information."




Electromagnetic Radiation Safety
22.2.2024 21:50

Welcome to EMR Safety


Since January 2013, the EMR Safety web site has addressed key scientific and policy developments concerning the health risks from exposure to electromagnetic radiation (EMR) and other non-ionizing electromagnetic fields.
With more than 200 posts, Saferemr.com provides a curated collection of links to articles on the health risks associated with cell phones and cordless phones, cell towers, 4G and 5G, Wi-Fi, Smart Meters, electric and hybrid cars, and various wireless devices. I also report on the manufacturing of doubt about the science by industry-linked scientists and organizations and by government agencies.

The web site has had more than four million page views by visitors from over 200 countries which attests to the global concern about the impact of wireless radiation on our health and on the environment.



EMR Safety reached one million page views on April 7, 2017, two million page views on March 11, 2019, three million page views on July 14, 2021, and four million page views on February 22, 2024.

During the past 11 years, more than half (56%) of visitors were from outside the United States with Canada, United Kingdom, France, Germany, India, Australia, Russia, and China represented the most.



For visitors new to this web site or this topic, see the overviews about why we are concerned about cell phones, cell towers, and other wireless devices:
"Cellphone radiation is harmful, but few want to believe it"
(Interview with Joel Moskowitz, UC Berkeley News, July 1, 2021)

"Radiofrequency Radiation and Your Health: Is 5G Harmful?" (Joel Moskowitz, Federal Mobility Group webinar / video & slides, 2023)
"We Have No Reason to Believe 5G is Safe" (Scientific American)"Regulators Steamroll Health Concerns as the Global Economy Embraces 5G" (The Washington Spectator)

For safety tips from various organizations about how to reduce your cell phone radiation exposure see: Cell Phone and Wireless Technology Safety Tips.
To explore specific topics, click on "Overview of Contents," located on the right hand side of the page. Articles are listed by topic. Find the article of interest and click on the link.
Overview of Contents

You can also look up articles by the month and year they were last updated in the archive, which is located in the right-hand column. Click on the month and a list of articles posted that month will appear. Then click on the article's title, and it will take you to the post of interest.
Each month I update a summary of peer-reviewed research on health risks associated with wireless radiation including the cancer risk, reproductive harm and neurological disorders. The complete collection of abstracts which contains more than 1,800 scientific papers since 2016 can be downloaded as a pdf file.
Finally, you can find topics of interest by using the Search Box at the upper left hand side of the page:

The most popular posts address 5G radiation, cellphones and health, the role of cell phones in increasing cancer or tumor incidence, electromagnetic fields (EMF) in hybrid and electric automobiles, and the Specific Absorption Rates (SAR) of popular smartphones.
For regular updates about electromagnetic radiation safety follow me on Twitter (@berkeleyprc), Facebook or LinkedIn.

Joel M. Moskowitz, Ph.D. School of Public Health University of California, Berkeley
E-Mail: jmm@berkeley.edu

Overview of Contents

Overview Articles

Tips to Reduce Your Wireless Radiation Exposure
International Commission on the Biological Effects of Electromagnetic Fields
International Scientist Appeal on Electromagnetic Fields & Wireless Technology (250+ EMF scientists petition for warnings & stronger regulation)

Mobilize, a Film about Cell Phone Radiation -- Award-winning documentary
Recent News Stories
News Releases

Radio Interviews (and Podcasts)
Presentations

Supplemental Information:
Electromagnetic Radiation Safety
23.2.2024 02:30

5G Wireless Technology: Is 5G Harmful to Our Health?


See the bottom of this page for additional summaries and resources.

Worldwide deployment of 5G, the fifth-generation of cell phone technology, started in 2019. 5G cellular technology employs low-band (600-900 megahertz), mid-band (1.7-4.7 gigahertz), and high-band radio frequencies (24-47 gigahertz).
The allocation of radio frequency spectrum for 5G varies by country. In the United States, the Federal Communications Commission (FCC) has allocated low-band spectrum at 0.6-0.8 GHz (i.e., 600-800 MHz), mid-band spectrum in the 2.5-4.0 GHz range, and 11 GHz of high-band frequencies including licensed spectrum from 24-28 GHz and 37-47 GHz, as well as unlicensed spectrum from 64-71 GHz which is open to all wireless equipment manufacturers.
To increase transmission speed 5G utilizes complex modulation of the carrier wave (i.e., Orthogonal frequency-division multiple access). Other features include massive multiple-input multiple-output (MIMO) or the capacity to send large amounts of data across multiple streams, and beamforming or the use of multiple antennas to control the signal enabling it to be targeted toward specific users. These features can create brief, but very intense, exposures to radio frequency radiation. Since current exposure limits are based upon exposures averaged over time (6 or 30 minutes), these bursts of radiation are essentially unregulated.
Biological and Health Effects of 5G

https://www.emf-portal.org/en/article/overview/mobile-communications-5g#level-1
Hardly any research has been published on the biological or health effects of 5G. According to EMF-Portal, an archive that contains more than 41,000 publications on electromagnetic fields, of the 675 papers published on "5G," only 26 (4%) were medical/biological studies (as of February 22, 2024). The 26 studies reported evidence of oxidative stress and adverse effects on the neuroendocrine system, the cardiovascular system, sleep quality, sperm quality, bone quality, gene expression, and sensorimotor responses. Most studies used animal models and short-term exposures to microwave radiation (especially continuous wave 3.5 GHz).
However, only four of these 26 studies may have actually tested the effects of 5G exposure. The biologic and health effects associated with exposure to 5G radiation depend on more than just the carrier frequency. Although these 26 studies employed carrier frequencies employed with 5G (e.g., 0.7 GHz, 2.65-3.6 GHz, 27-36 GHz), only four studies tested exposures with 5G modulation and other features that are likely to affect the nature and extent of biological or health effects from exposure. Most studies employed a continuous wave generator; yet, 5G requires a complex modulated, orthogonal frequency-division multiplexing (OFDM) signal with additional features that yield brief, high intensity exposures (i.e., phased arrays, beamforming, and massive MIMO).

The four 5G studies are briefly summarized below (Hardell and Nilsson, 2023; Chu et al., 2023; Pustake et al., 2022; Perov et al., 2022).
Two studies examined the effects of exposure to a 5G cell tower but were subject to confounding with other radio frequency exposures:
  1. Hardell and Nilsson (2023) reported a case study in which a man and woman developed electromagnetic hypersensitivity (EHS) with neurological symptoms, headache, fatigue, insomnia, tinnitus, skin disorders, and blood pressure variability) after a 5G antenna was added to a 3G/4G cell tower on the roof of their apartment building. (To date, this research team has published a half dozen case studies with 5G cell towers.)
  2. Perov et al. (2022) exposed male rats for four months to a 5G base station that transmitted at 3.6 GHz, 28 GHz, and 36 GHz and found that the exposure moderately increased stress on the neuroendocrine system.
Only two studies examined the effects of exposure to 5G using 4G/5G cell phones:
  1. Chu et al. (2022) conducted a pilot study in which human semen samples were briefly exposed to smart phones and found that Wi-Fi negatively affected sperm motility and viability, but not 4G/5G; however, the results varied across phones.
  2. Pustake et al. (2022) exposed butter bean seeds to a 4G/5G cell phone and found adverse effects on seed germination and growth.
Following are the 26 so-called "5G" studies currently listed in EMF-Portal:

--
ICNIRP Guidelines' Exposure Assessment Method for 5G Millimetre Wave Radiation May Trigger Adverse Effects

Redmayne M, Maisch DR. ICNIRP Guidelines' Exposure Assessment Method for 5G Millimetre Wave Radiation May Trigger Adverse Effects. Int. J. Environ. Res. Public Health 2023, 20, 5267. doi: 10.3390/ijerph20075267.

Abstract
The current global roll-out of 5G infrastructure is designed to utilise millimetre wave frequencies (30–300 GHz range) at data transmission rates in the order of gigabits per second (Gbps). This frequency band will be transmitted using beamforming, a new introduction in near-field exposures. The International Commission on Non-Ionising Radiation Protection (ICNIRP) has recently updated their guidelines. We briefly examine whether the new approach of the ICNIRP is satisfactory to prevent heat damage and other adverse bio-effects once millimetre wave 5G is included, and we challenge the use of surface-only exposure assessment for local exposures greater than 6 GHz in part due to possible Brillouin precursor pulse formation. However, this is relevant whether or not Brillouin precursors occur from absorption of either 5G or future G transmissions. Many significant sources conclude there is insufficient research to assure safety even from the heat perspective. To date, there has been no published in vivo, in vitro or epidemiological research using exposures to 5G New Radio beam-formed signals.

Conclusions
Surface radiofrequency exposure assessments including mmW radiation are insufficient to ensure safety; there are several reasons assessment of SAab is also needed.
A real danger of the 'expert' assurances of a lack of risk is that they discourage the necessary research to evaluate risk properly. They may also discourage review of apparently outmoded/questionable approaches being taken in RF exposure standards.
Once the 5G mmW band is internationally operational, a significant proportion of the world's population will be exposed to new hazards. The intensity and complexity of near-field exposure, such as when carrying a phone in a pocket or using it next to the head, will be different for 5G, and this is the first time mmW have been used for public telecommunications and the first time beamforming has been deliberately introduced for near-field use. Without research on the impact of near-field 5G, this global step is an experiment at the population level. Bearing this in mind, there is a vital and urgent need for targeted research and for a re-evaluation of the scientific relevance of the current RF human exposure standards' basic approach and assumptions.
Open access paper: https://www.mdpi.com/1660-4601/20/7/5267
--
Case Report: The Microwave Syndrome after Installation of 5G Emphasizes the Need for Protection from Radiofrequency Radiation
Hardell L, Nilsson M. (2023). Case Report: The Microwave Syndrome after Installation of 5G Emphasizes the Need for Protection from Radiofrequency Radiation. Ann Case Report. 8: 1112. doi: 10.29011/2574-7754.101112.

Abstract

In this case report two previously healthy persons, a man aged 63 years and a woman aged 62 years, developed symptoms of the microwave syndrome after installation of a 5G base station for wireless communication on the roof above their apartment. A base station for previous telecommunication generation technology (3G/4G) was present at the same spot since several years. Very high radiofrequency (RF) radiation with maximum (highest measured peak value) levels of 354 000, 1 690 000, and >2 500 000 µW/m2 were measured at three occasions in the bedroom located only 5 meters below the new 5G base station, compared to maximum (peak) 9 000 µW/m2 prior to the 5G deployment. The rapidly emerging symptoms after the 5G deployment were typical for the microwave syndrome with e.g., neurological symptoms, tinnitus, fatigue, insomnia, emotional distress, skin disorders, and blood pressure variability. The symptoms were more pronounced in the woman. Due to the severity of symptoms, the couple left their dwelling and moved to a small office room with maximum (peak) RF radiation 3 500 µW/m2. Within a couple of days, most of their symptoms alleviated or disappeared completely. This medical history can be regarded as a classic provocation test. The RF radiation levels in the apartment were well below the limit proposed to be "safe" below which no health effects would occur, recommended by the International Commission on Non-Ionizing Radiation (ICNIRP). These now presented symptoms of the microwave syndrome were caused by non-thermal effects from RF radiation and highlight that the ICNIRP guidelines used in most countries including Sweden do not protect human health. Guidelines based on all biological negative effects from RF radiation are urgently needed, as well as monitoring human health, not the least due to rapidly increasing levels of exposure.

Open access paper: https://www.gavinpublishers.com/article/view/case-report-the-microwave-syndrome-after-installation-of-5g-emphasizes-the-need-for-protection-from-radiofrequency-radiation
--

Effect of Radiofrequency Radiation Emitted by Modern Cellphones on Sperm Motility and Viability: An In Vitro Study
Chu KY, Khodamoradi K, Blachman-Braun R, Dullea A, Bidhan J, Campbell K, Zizzo J, Israeli J, Kim M, Petrella F, Ibrahim E, Ramasamy R. Effect of Radiofrequency Electromagnetic Radiation Emitted by Modern Cellphones on Sperm Motility and Viability: An In Vitro Study. Eur Urol Focus. 2023 Jan;9(1):69-74. doi: 10.1016/j.euf.2022.11.004.

Abstract

Background: Cellphones emit radiofrequency electromagnetic radiation (RF-EMR) for transmission of data for social media communication, web browsing, and music/podcast streaming. Use of Bluetooth ear buds has probably prolonged the time during which cellphones reside in the trouser pockets of men. It has been postulated that RF-EMR increases oxidative stress and induces free radical formation.

Objective: To investigate the effect of wireless-spectrum (4G, 5G, and WiFi) RF-EMR emitted by modern smartphones on sperm motility and viability and explore whether these effects can be mitigated using a physical barrier or distance.

Design, setting, and participants: Semen samples were obtained from fertile normozoospermic men aged 25-35 yr. A current-generation smartphone in talk mode was used as the RF-EMR source. A WhatsApp voice call was made using either 4G, 5G, or WiFi wireless connectivity. We determined if exposure effects were mitigated by either a cellphone case or greater distance from the semen sample.

Outcome measurements and statistical analysis: The semen samples were analyzed according to 2010 World Health Organization laboratory guidelines. Statistical analysis was performed using SPSS v.28.

Results and limitations: We observed decreases in sperm motility and viability with WiFi exposure but not with exposure to 4G or 5G RF-EMR. With large variability among smartphones, continued research on exposure effects is needed.

Conclusions: Our exploratory study revealed that sperm motility and viability are negatively impacted by smartphones that use the WiFi spectrum for data transmission.

Patient summary: We looked at the effect of cellphone use on sperm motility and viability. We found that cellphones using WiFi connectivity for data usage have harmful effects on semen quality in men.

​Excerpts
Our study is not without limitations. First, our small sample size of 18 introduces potential sources of bias. We did not collect demographic data for these patients in order to maintain privacy, so the results may be subject to confounding bias. As the first of its kind at our institution, this small trial was a pilot study to validate our experimental model and procedures. We hope that further studies on the effects of RF-EMR on semen parameters can be performed on larger samples to validate our initial results. Second, we recognize that other potential variables, including temperature and radiation strength, could play a role in inducing changes in semen parameters. For this preliminary study, we were only interested in a single variable (radiation); future work should investigate the impact of temperature and radiation strength on changes in semen. This was an exploratory in vitro study, and further in vivo studies in animal models should be performed to further evaluate the impact of radiation on semen parameters.
Conclusions

Our study revealed that 4G/5G RF-EMR emitted by a contemporary cellphone did not have negative effects on sperm motility and viability. By contrast, WiFi exposure did have negative effects. During data use, there may be an increase in heat dissipated by a cellphone, depending on the power required to connect to the source. Interestingly, we observed varying effects of WiFi on sperm parameters, depending on the environment. We posit that a greater distance from the wireless router results in a need for more cellphone power, which may lead to greater heat production and result in negative effects on sperm motility and viability. Mitigation measures such as use of a cellphone case and increasing the distance between the cellphone and the sperm sample lessened the effects. Further studies need to be performed to better understand the effects of RF-EMR on sperm parameters.

https://pubmed.ncbi.nlm.nih.gov/36379868/

--
Status of the Neuroendocrine System in Animals Chronically Exposed to Electromagnetic Fields of 5G Mobile Network Base Stations
Perov SY, Rubtsova NB, Belaya OV. Status of the Neuroendocrine System in Animals Chronically Exposed to Electromagnetic Fields of 5G Mobile Network Base Stations. Bull Exp Biol Med. 2023 Jan 4. doi: 10.1007/s10517-023-05689-2.
Abstract
We studied the biological effect of chronic exposure to multifrequency electromagnetic fields simulating the effects of 5G NR/IMT-2020 mobile communication systems. Male Wistar rats were exposed to 24-h radiation (250 μW/cm2) for 4 months. The exploratory activity of the animals and blood concentrations of ACTH and corticosterone were evaluated at the end of each month of exposure and 1 month after exposure. The results suggest that exposure to multifrequency electromagnetic field simulating the effects of 5G systems affected functional activity of the hypothalamus-pituitary-adrenal axis and was stressful in nature.
Excerpts
The animals were divided into 5 experimental (exposure to EMF of 5G systems, power density (PD) 250 μW/cm2) and 5 control (sham exposure) groups (12 rats each). Exposure conditions: chronic experiment — exposure for 4 months (120 days; 24-h, 7 days per week) and 1-month (30 days) post exposure period (without irradiation). During exposure period, the animals of experimental groups were kept in radio transparent (plastic) cages. Exposure was carried out by 5G/IMT-2020 base stations with simultaneous use of radio channels with 3.6 GHz (n78 with 100 MHz channel bandwidth), 28 GHz (n257 with 100 MHz channel bandwidth) and 37 GHz (n260 with 400 MHz channel bandwidth) central frequencies....
The neuroendocrine system of rats responded to chronic 4-month EMF exposure by waveform changes of serum levels of ACTH and corticosterone. ACTH content had a tendency to increase after 3 months of the experiment (Fig. 1).

Changes in serum corticosterone content in exposed animals were more pronounced; significant differences from the control group were revealed after 1 and 2 months of exposure and the maximum increase was found 1 month after end of exposure (Fig. 2).
Chronic exposure induced changes in orientation and exploratory activity and emotional state of experimental animals. These changes were detected starting from 3rd month of exposure, but did not reach significance threshold, and 1 month after the end of irradiation, the excitation and inhibition processes in the CNS returned to normal.

https://pubmed.ncbi.nlm.nih.gov/36598666/

--

Brillouin Precursors, a theoretical oddity or a real concern for 5G millimetre-wave bands to be used in future high-speed telecommunications?

Don Maisch, Ph.D., Discussion Paper, July 21, 2022

The following topics are briefly discussed in the paper:

  • Brillouin Precursors
  • The need for reliable research
  • Uncertainties with ICNIRP's thermally based limits for millimeter wave emissions
  • A potential risk for property owners

Excerpts

"... With a millimeter wavelength of 0.65 mm at 42 GHz. The waves can penetrate into the human skin deep enough to affect most skin structures located in the epidermis and dermis.1 However, these types of waves present other challenges. The first is that when most of the energy is focused in a small area, such as 5G antenna beam-forming, the risk of human tissue heating for anyone in the path of the beam will be increased.
The second challenge is that signals such as radar that are made of sharp pulses behave differently when they enter body tissue containing moving charges (such as potassium ions). Each incoming pulse generates a force that accelerates these moving charges, thereby causing them to become emitters of electromagnetic radiation (EMR). This additional radiation adds large spikes onto the leading and trailing edges of the original EMR pulse. The sharp transients, called "Brillouin Precursors" increase the strength of the original signal and reradiate EMR waves deeper into the body than predicted by conventional thermal models. 2

The creation of Brillouin Precursors within the body by very short pulsed signals in the frequency of 10 GHz or more (millimeter wave bands) was described by Albanese et al in 1994. These authors predicted that the interaction of these signals with human tissue would cause disruption of large molecules, and damage cell membranes leading to blood-brain barrier leakage. 3 ....
It must be pointed out that little research has been carried out on the possibility of adverse biological effects from the creation of Brillouin precursors with 5G phased array antennas (let alone on 6G communications). Considering the high download speeds, which may have unintended adverse biological effects, this should be a priority.
Other damaging effects have been predicted in a paper published in Health Physics in December 2018 by Esra Neufeld and Niels Kuster. The paper suggests that permanent skin damage from tissue heating may occur even after short exposures to 5G millimetre wave pulse trains (where repetitive short, intense pulses can cause rapid, localised heating of skin). The authors stated that there is an urgent need for new thermal safety standards to address the kind of health risks possible with 5G technology ....
It is possible that this advice was in response to the ICNIRP draft guidelines (2019) as some changes were made to the final published guidelines. However, the changes did not conform to those suggested and it is not clear that the possibility of excessive heat absorption from these higher frequencies, which may result in pain, has been addressed in ICNIRP's current guidelines.
The necessity for more reliable research into possible damaging effects of pulsed millimetre waves used for 5G communications is also seen in an August 2021 paper by Foster and Vijayalaxmi ....
Concerns over the lack of scientific data regarding possible biological effects of millimeter waves proposed for use in modern telecommunications have been raised by Nicholas Lawler et al. in Biomedical Optics Express (May 2022). The authors found that the studies cited indicate a strong power and dose dependence of millimeter wave induced effects at biologically relevant exposure levels such as those recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) ....
The "take-home" message from the above mentioned papers is that we still do not have adequate research on 5G millimetre waves to be able to assure the public that the many thousands of 5G antennas, in many instances placed in close proximity to homes and workplaces, are without a possible health risk because the necessary research has not yet been conducted.
Open access paper: https://betweenrockandhardplace.files.wordpress.com/2022/08/don-maisch-brillouin-precursors-july-8-2022.pdf

--


Expert reveals 5G risks

Lyn McLean, Director, EMR Australia PL, April 8, 2022

"Frequencies used in Telecommunications – An Integrated Radiobiological Assessment"

By Yuri G. Grigoriev, translated by ORSAA [Oceania Radiofrequency Scientific Advisory Association Inc (www.orsaa.org)]

The book can be downloaded for free: https://bit.ly/GrigorievBook (198 page pdf)

One of the world's leading authorities on wireless radiation has documented the risks of 5G radiation in "the first book on 5G that outlines the potential dangers of 5G technology, both in Russia and overseas."

The book, written by Professor Yuri Grigoriev shortly before his death, was recently translated into English by the Oceania Radiofrequency Scientific Advisory Association (ORSAA) and can now be downloaded for free.

Many countries (including Australia) base their radiation standards on Guidelines developed by the International Commission on Nonionizing Radiation Protection (ICNIRP). In the book, Prof Grigoriev points out that ICNIRP is not necessarily a credible body, and its members are not impartial scientists. The ICNIRP Guidelines, he believes, are inadequate because they are only designed to protect people from the heating effects of radiation. But even this, they don't do properly.

[Note: In the U.S., the radio frequency radiation guidelines adopted by the FCC are similar to those of ICNIRP.]

Among the problems with these guidelines are that:

  • they don't prevent unacceptable increases in temperature

  • they don't restrict the intensity of spikes of radiation

  • a person would have to hold a 5G mobile phone 8 cm from their head or body to comply with them.

Grigoriev says 'ICNIRP members persist in arguing that the thousands of peer-reviewed studies that have found biological or medical consequences from chronic exposure to non-thermal EMF levels are insufficient to warrant stricter safety regulations.'

Grigoriev refers to studies showing harmful effects of 5G millimetre waves (MMWs). They include:

  • demyelination of nerve cells

  • changes to cell membranes, including changes to ion channels

  • inhibition of cell cycle progression

  • changes to levels of enzyme and proteins in the brain's hippocampus

  • double-strand breaks in DNA

  • effects on reproduction

  • changes to the sensitivity of the skin

  • effects on peripheral and central nervous systems

  • effects on the hypothalamus and pituitary glands and changes to cortisol and testosterone hormones

  • changes to heart rate

  • changes to immune function

  • degranulation of mast cells in the skin (that can cause allergic-type symptoms).

Grigoriev says that individuals react differently to exposure, and this can make it difficult for observers to draw conclusions and can lead to errors in assessing the impacts of radiation.

He writes, "From our evaluation of the results of preliminary studies on the possible impacts on the health of the population of the 5G MMW-exposures alone …, we consider it reasonable to expect the following adverse effects: impacts on normal functioning in the critical organs of the skin and eyes; mediated systemic reactions in the body as a whole; and, most notable, impacts to the nervous and immune systems."

Grigoriev refers to calls by doctors, scientists and administrations in different countries to halt the roll-out of 5G until it can be demonstrated to be safe. He says, 'Irradiation of the human population by MMWs without the appropriate precautionary standards is clearly immoral – in the same way as conducting or observing an experiment would be, when it has the possibility of developing pathological processes; eg, according to the notion: 'Wait and see … then we will be able to establish proper standards.' Of course, by then, it will be too late!"


Professor Yuri G. Grigoriev (PhD, DMedSci) 1925-2021
  • Chief Scientific Officer, Laboratory of Radiobiology and Hygiene of Non-Ionizing Radiation, Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency (Russia)
  • Academician, Academy of Electro-Technical Sciences (Russia)
  • Deputy Chair, Bureau of Radiobiology, Russian Academy of Sciences
  • Member of the WHO Advisory Committee (International EMF Project)
  • Member of the Russian Scientific Commission on Radiation Protection
  • Member of the Russian National Committee on Non-Ionizing Radiation Protection
  • Member of the International Commission for Electromagnetic Safety
==
Mar 24, 2022 5G Observatory Quarterly Report 13 - Up to October 2021
Valdani Vicari & Associati (VVA), PolicyTracker, LS telcom AG. European Commission Study on "European 5G Observatory phase III." CNECT/2021/OP/0008: 1-135. 2021.
Excerpts
  • In the richest nations like the USA, Japan, South Korea and China, commercial 5G services have been in operation for a couple of years, and 5G is now spreading to less developed countries.
  • The USA has assigned the most mmWave (millimeter wave) spectrum: four bands in total, compared to one in some of the EU and none in China.
  • It is important to note that most of the figures collected on the number of 5G base stations are provided by governments, but in some cases such as the USA and Japan, they are based on market research estimates. It is possible that some market-based estimates are not entirely up to date or accurate.
Open access report: https://5gobservatory.eu/wp-content/uploads/2021/11/5G-Obs-PhaseIII_Quarterly-report-13_final-version-11112021.pdf

==
Possible health effects on the human brain by various generations of mobile telecommunication: a review based estimation of 5G impact
Hiie Hinrikus, Tarmo Koppel, Jaanus Lass, Hans Orru, Priit Roosipuu, Maie Bachmann. Possible health effects on the human brain by various generations of mobile telecommunication: a review based estimation of 5G impact. Int J Radiat Biol. 2022 Jan 7;1-48. doi: 10.1080/09553002.2022.2026516.

Abstract

Purpose: The deployment of new 5G NR technology has significantly raised public concerns in possible negative effects on human health by radiofrequency electromagnetic fields (RF EMF). The current review is aimed to clarify the differences between possible health effects caused by the various generations of telecommunication technology, especially discussing and projecting possible health effects by 5G. The review of experimental studies on the human brain over the last fifteen years and the discussion on physical mechanisms and factors determining the dependence of the RF EMF effects on frequency and signal structure have been performed to discover and explain the possible distinctions between health effects by different telecommunication generations.

Conclusions: The human experimental studies on RF EMF effects on the human brain by 2G, 3G and 4G at frequencies from 450 to 2500 MHz were available for analyses. The search for publications indicated no human experimental studies by 5G nor at the RF EMF frequencies higher than 2500 MHz. The results of the current review demonstrate no consistent relationship between the character of RF EMF effects and parameters of exposure by different generations (2G, 3G, 4G) of telecommunication technology. At the RF EMF frequencies lower than 10 GHz, the impact of 5G NR FR1 should have no principal differences compared to the previous generations. The radio frequencies used in 5G are even higher and the penetration depths of the fields are smaller, therefore the effect is rather lower than at previous generations. At the RF EMF frequencies higher than 10 GHz, the mechanism of the effects might differ and the impact of 5G NR FR2 becomes unpredictable. Existing knowledge about the mechanism of RF EMF effects at millimeter waves lacks sufficient experimental data and theoretical models for reliable conclusions. The insufficient knowledge about the possible health effects at millimeter waves and the lack of in vivo experimental studies on 5G NR underline an urgent need for the theoretical and experimental investigations of health effects by 5G NR, especially by 5G NR FR2.
https://pubmed.ncbi.nlm.nih.gov/34995145/
Excerpts
Experimental human in vivo studies at radiofrequency range 0.01-300 GHz published in peer-reviewed journals in the last fifteen years (2007–2021) were eligible, including all types of telecommunication signals and pulse-modulated radiofrequency radiation.

Altogether 73 publications were included in the review.

According to investigated parameters, the studies were divided into four categories: resting electroencephalography (EEG), sleep EEG and sleep quality, event related potentials (ERP) and cognition-behavior and brain metabolism. Statistically significant changes in an investigated parameter between sham and exposed conditions were considered as an effect.

Table 2 presents the studies that report the RF EMF effect or no effect at different signal structures and frequencies.

No clear interdependency between the generation of telecommunication technology and the character of RF EMF effects becomes evident from Table 2. All categories of the reported statistically significant effects as well as no effects include exposure from various generations of telecommunication systems and different RF EMF frequencies.


The rate of studies reporting effect is 78.6% at 450 MHz, 66.7% at 900 MHz, 43.6% at 1800 MHz, and 57.1% at 2450 MHz. The rate of positive findings is maximal, 78.6%, at 450 MHz band and minimal, 43.8%, at 1800 MHz band. However, along with the possible regular frequency dependent trend, the decrease could be related to other factors: differences in signal structures and varying number of experiments at different frequencies. The difference between results at 450 MHz and 1800 MHz can be partly related to the character of applied exposure: at 450 MHz remarkable part of studies have used meander-like pulse-modulated, not telecommunication signals like RF EMF exposure.
The rate of studies reporting effect is 33.3% at TETRA, 63.6% at GSM, 46.2% at WCDMA, 80% at LTE and 20% at WiFi signals. These numbers should be taken with caution due to the small number of studies, especially at LTE, WiFi and TETRA signals. Some trends can be mentioned: the rate of studies reporting RF EMF effect is higher than 50% at LTE and GSM signals, lower than 50% at WCDMA and TETRA signals and minimal at WiFi signals. This trend is not in accordance with the possible dependence on the used radiofrequency and needs explanation based on the characteristic behavior of the used signals.

Conclusions

In the current review, the experimental investigations on RF EMF effects on human EEG, ERP, cognition and behavior were analyzed at the exposure conditions typical for the 2G, 3G and 4G generations of mobile telecommunication technology at frequencies from 450 to 2500 MHz. The search for publications indicated no studies on human EEG, ERP, cognition and behavior by 5G nor at RF EMF frequencies higher than 2500 MHz.

The results of the current review demonstrate no consistent relationship between the character of RF EMF effects and parameters of exposure by different generations (2G, 3G, 4G) of mobile telecommunication technology. The following trends can be mentioned:

  1. Various generations of telecommunication technology seem to contribute to similar effects. There is no special frequency nor signal structure related to a specific effect.

  2. Some decrease in the rate of studies reporting effects with the increase of RF EMF frequency can be declared. However, due to the small number of studies, especially at higher frequencies (≥2 GHz), the results need to be considered with caution.

The existing knowledge about the mechanisms underlying RF EMF effects allows us to formulate the following conclusions:

  1. The dielectric polarization, a physical reason behind the RF EMF effects, decreases with the frequency of RF EMF. The electric permittivity is relatively stable at frequencies over 0.1 and 10 GHz, but decreases fast at frequencies higher than 10 GHz. At frequencies higher than 10 GHz, the effects related to the dielectric polarization become small. The scarce data about the RF EMF effects at frequencies higher than 10 GHz provide insufficient knowledge to clarify the possible interaction mechanisms.

  2. The theory of parametric excitation could explain the impact of the signal structure. The presence of the low-frequency components lower than 1000 Hz in the spectrum of RF EMF exposure (2G-5G) is an important factor to give rise to the RF EMF effects on the nervous system. The RF EMF effects are most probably caused by the telecommunication systems with low-frequency components lower than 100 Hz (4G, 5G FR1, 5G FR2).

Currently, there are no data about RF EMF effects caused by 5G telecommunication systems. Combining data of experimental results with existing knowledge in the mechanisms of RF EMF effects, the conclusions about the possible 5G effects can be derived:

  1. At the RF EMF frequencies lower than 10 GHz, the impact of 5G NR FR1 should have no principal differences compared to the previous generations. The frequencies used in 5G are even higher and the penetration depths of the fields are smaller, therefore the effect is rather lower than at previous generations.

  2. The low-frequency components in the 5G NR FR1 RF EMF spectrum are similar to these of 4G. Therefore, the possible health effects should have the same level.

  3. At the RF EMF frequencies higher than 10 GHz, the mechanism of the effects might change and the impact of 5G NR FR2 becomes unpredictable.

  4. The possible health effects caused by 5G NR FR2 are not limited to the impact on skin but can be widened by the excitation of nervous system.

  5. Existing knowledge about the mechanism of RF EMF effects at millimeter waves lacks sufficient experimental data and theoretical models for reliable conclusions.

The insufficient knowledge about the possible health effects at millimeter waves and the lack of in vivo experimental studies on 5G NR underline an urgent need for the theoretical and experimental investigations of health effects by 5G NR, especially by 5G NR FR2.

--
Health Effects of 5G Base Station Exposure: A Systematic Review
Tasneem Sofri, Hasliza A Rahim, Mohamedfareq Abdulmalek, Khatijahhusna Abd Rani, Mohd Hafizi Omar, Mohd Najib Mohd Yasin, Muzammil Jusoh, Ping Jack Soh. Health Effects of 5G Base Station Exposure: A Systematic Review. IEEE Access. Dec 30, 2021. doi: 10.1109/ACCESS.2021.3139385.

Abstract

The Fifth Generation (5G) communication technology will deliver faster data speeds and support numerous new applications such as virtual and augmented reality. The additional need for a larger number of 5G base stations has sparked widespread public concerns about their possible negative health impacts. This review analyzes the latest research on electromagnetic exposure on humans, with particular attention to its effect on cognitive performance, well-being, physiological parameters, and Electroencephalography (EEG). While most of their results indicated no changes in cognitive function, physiological parameters, or overall well-being, the strength of the EEG alpha wave is noticed to vary depending on various aspects of cognitive functions. However, the available studies have not investigated the health effects resulting from exposure from the 5G mobile phone and base station antennas from 700 MHz to 30 GHz on the cognitive performance, well-being subjective symptoms, human physiological parameters, and EEG of adults. There is a need for such research regarding this current emerging technology. Such studies are significant in determining whether 5G technology is indeed safe for humans.

Conclusion

This work presents an analysis of exposure studies conducted using signals from 400 MHz to 1750 MHz (for 4G). From this analysis, the following conclusions are made:
• Most of the studies in literature using 2G/3G/4G showed no effects and no consistency in how exposure to these signals affected the cognitive, physiological parameters, well-being, and EEG of the volunteers.
• Most research on human cognition, physiological parameters, and well-being so far have focused on the impacts of GSM900/GSM1800/UMTS/4G MPs, GSM900/GSM1800/UMTS BSs, DECT, and Wi-Fi exposures.

• There is an absence of studies reporting the effects of 5G (700 MHz, 3.5 GHz, or 28 GHz) BS signals on adults in terms of cognitive performance, well-being, or physiological markers (heart rate, blood pressure, and body temperature).

Figure 9 and 10 illustrated the possible flowchart and schematic diagram to study the effects of 5G BS exposure signals for sub-6 GHz and mmWave bands (of up to 30 GHz) to human subjects. Data from such a study will be useful in explicitly determining the significance signal exposure from 5G BS on human health, considering their much closer proximity to users.

Open access paper: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9665755
--
Health Council of the Netherlands and evaluation of the fifth generation, 5G, for wireless communication and cancer risks
Lennart Hardell. Health Council of the Netherlands and evaluation of the fifth generation, 5G, for wireless communication and cancer risks. World J Clin Oncol 2021; 12(6): 393-403 doi: 10.5306/wjco.v12.i6.393.
Abstract

Currently the fifth generation, 5G, for wireless communication is about to be rolled out worldwide. Many persons are concerned about potential health risks from radiofrequency radiation. In September 2017, a letter was sent to the European Union asking for a moratorium on the deployment until scientific evaluation has been made on potential health risks (https://www.5Gappeal.eu). This appeal has had little success. The Health Council of the Netherlands released on September 2, 2020 their evaluation on 5G and health. It was largely based on a World Health Organization draft and report by the Swedish Radiation Safety Authority, both criticized for not being impartial. The guidelines by the International Commission on Non-Ionizing Radiation Protection were recommended to be used, although they have been considered to be insufficient to protect against health hazards (https://www.emfscientist.org). The Health Council Committee recommended not to use the 26 GHz frequency band until health risks have been studied. For lower frequencies, the International Commission on Non-Ionizing Radiation Protection guidelines were recommended. The conclusion that there is no reason to stop the use of lower frequencies for 5G is not justified by current evidence on cancer risks as commented in this article. A moratorium is urgently needed on the implementation of 5G for wireless communication.

Core Tip: In this comment, guidelines for radiofrequency radiation are discussed in relation to a recent evaluation by the Health Council of the Netherlands. The Committee recommends that for the deployment of 5G the frequency band 26 GHz should not be used. For lower frequencies, the International Commission on Non-Ionizing Radiation Protection guidelines are recommended. However, these guidelines are not based on an objective evaluation of health risks, which is discussed in this paper.
Conclusion
In conclusion regarding cancer, current scientific evidence clearly demonstrates an increased risk for glioma and acoustic neuroma for use of mobile and/or cordless phones. In this review other tumor types and health endpoints are not discussed. The increased risk for brain and head tumors is based on human cancer epidemiology studies and is supported by similar tumor types found in animal studies. In fact, these animal studies confirmed the earlier results in case-control studies on increased tumor risk for use of wireless phones (both mobile and cordless phones). Mechanistic aspects on carcinogenesis come from laboratory findings on, e.g., the increase of reactive oxygen species[5] and DNA damage[4]. The current evaluation by the Health Council of the Netherlands is based on a WHO draft and SSM report. It also recommends using ICNIRP guidelines, considered to be insufficient to protect against health hazards, such as cancer, by the majority of the scientists in this field (https://www.emfscientist.org). The report does not represent a thorough, balanced, objective, and up-to-date evaluation of cancer risks and other hazardous effects from RF radiation. It is also strikingly contradictory as it concludes that serious health effects such as cancer and birth defects are "possible." Yet it has no objection to the roll-out of 5G and recommends that later studies are performed to study health outcomes such as cancer and birth defects. Thus, no lessons are learned from existing observations on increased cancer risks[49]. The conclusion by the Commission that there is no reason to stop the use of lower frequencies for 5G up to 3.5 GHz because of no "proven adverse health effects," merely reflects the biased conclusions by ICNIRP dominated groups. Thus that conclusion must be dismissed, and new guidelines for previous and new frequencies must be established considering the new technology, the different propagation pattern for 5G, and increased RF radiation. A moratorium is urgently required on the implementation of 5G for wireless communication[13]. Ultimately, wired solutions are preferred.

Open access paper: https://www.wjgnet.com/2218-4333/full/v12/i6/393.htm

--Related Posts
Regulators Steamroll Health Concerns as the Global Economy Embraces 5G (Washington Spectator)
"We Have No Reason to Believe 5G is Safe" (Scientific American)
Scientific American Created Confusion about 5G's Safety: Will They Clear It Up? (includes "5G, Public Health and Uncomfortable Truths")

5G Wireless Technology: Millimeter Wave Health Effects5G Wireless Technology: Cutting through the Hype
Scientists and Doctors Demand Moratorium on 5GGovernment Accountability Office (GAO) 2020 Report on 5G5G and Health (Netherlands Health Council)European Parliament: 5G Health Effects and Environmental Impact
ICNIRP's Exposure Guidelines for Radio Frequency Fields
Worldwide Radio Frequency Radiation Exposure Limits versus Health Effects
Cell Tower Health EffectsElectromagnetic Hypersensitivity (EHS)
Physicians for Safe TechnologyEnvironmental Health TrustMicrowave News
--
Health Safety Guidelines and 5G Wireless Radiation [Health Matters]
James C. Lin. Health Safety Guidelines and 5G Wireless Radiation [Health Matters]. IEEE Microwave Magazine. 23(1):10-17. Jan. 2022, doi: 10.1109/MMM.2021.3117307.
Abstract
The rollout of 5G cellular communication technology is well underway worldwide. The advocates of 5G mobile technology hail it as a faster and more secure technology than its predecessor, 3G and 4G systems. The major enabling infrastructure uses millimeter-wave (mm-wave) and phased-array technology to achieve line-of-sight directivity, high data rates, and low latency. A central vulnerability or security threat is that it may allow spying on users. Nevertheless, this is a system architecture and technology or regulatory issue but not a biological effect or health safety matter.

https://ieeexplore.ieee.org/document/9632507
My note: James C. Lin, Professor Emeritus in the Department of Electrical and Computer Engineering at the University of Illinois Chicago. Dr. Lin is one of the most renowned scientists who has studied the biological interactions of wireless radiation. He is a fellow of the American Association for the Advancement of Science and the Institute of Electrical and Electronics Engineers (IEEE). Since 2006 he has been the Editor-in-Chief of the Bioelectromagnetics journal published on behalf of the Bioelectromagnetics Society (BEMS), an international organization of biological and physical scientists, physicians and engineers. In a prior article, Dr. Lin, an ICNIRP Commission member from 2004-2016, accused the organization of groupthink: "The simultaneous penchant to dismiss and criticize positive results and the fondness for and eager acceptance of negative findings are palpable and concerning."

Like several previous articles that Dr. JC Lin wrote for IEEE Microwave Magazine, the abstract is biased toward risk minimization so read the paper or the following excerpts.

Excerpts
Low-band 5G starts at roughly 400 MHz and uses existing or previous 3G or 4G frequencies or newly opened frequencies to operate; the latter, for example, may overlap with the existing 4G band. The 5G rollout began with midband, which includes popular frequencies between 3 and 4 GHz. However, primary 5G technological advances are associated with high-band 5G, which promises performance bandwidth as high as 20 GHz, and multiple-input, multiple-output strategies using 64–256 antennas at short distances and offering performances up to 10 times better than the current 4G networks."
"For health safety matters, it is not apparent whether the biological responses to high-band 5G radiations would be akin to earlier generations or low-band 5G radiations, given the distinctive characteristics of mm-wave and its interaction with the complex structure and composition of pertinent, superficial biological cells and tissues such as the cornea of the eye and nerve-rich human skin, the large, protective organ of the body."
"The two most widely promulgated RF health safety guidelines or standards have recently published revisions of their respective 1998 and 2005 versions [1], [2]. The updated International Commission on Nonionizing Radiation Protection guidelines and IEEE standards appear to cater to industry wishes; they are strongly linked to thermal effects associated with measurable temperature elevations. Also, the updates seem to have been synchronized to accommodate the 5G rollout."
"To date, there has not been a single reported epidemiological study that investigated mm-waves and their potential health effects.
Thus, although there are roughly 100 published laboratory investigations of all types, and the reported biological responses are inconsistent in their association between biological effects and mm-wave exposure. Indeed, the types of reported laboratory investigations are small, limited, and diverse, considering the wide, 5G, mm-wave frequency domain. The jury on biological effects or health impacts is still out on 5G mm-waves. Moreover, there is a lack of ongoing, controlled laboratory investigations...."
"If the entities responsible for safety recommendations believe what appears to be their position concerning experimental results from rats from the NIEHS/NTP that a whole-body temperature rise of 1 °C is carcinogenic, then the safety factors of 50 adopted for the public or 10 for workers would be marginal for their stated purpose and practically meaningless from the perspective of "safety" protection (more so above 6 GHz)."
"As shown in Table 1, for mm-waves, the referenced local-tissue-temperature rise in the head, torso, and limbs of humans is 5 °C. This level of temperature rise would bring the tissue temperature from a normal value of 37 °C to a hyperthermic 42 °C. A 42 °C tissue temperature is known to be cytotoxic, with exponential cell-killing capacities. It is used as the basis for clinical cancer therapy in hyperthermia treatment for cancer protocols [14]–[16]. The recently updated safety recommendations provide a reduction factor of 10 for the public's safety and a reduction factor of two in the case of workers. In this situation, the efficacy of these updated safety recommendations is borderline, and the updated recommendations are meaningless from the perspective of safety protection.

In summary, the safety recommendation updates were based primarily on limiting the tissue-heating potentials of RF radiation to elevate body temperatures. There are significant anomalies in the recently updated safety recommendations. Moreover, aside from the aforementioned anomalies, the existing scientific data are too limited—especially at mm-wavelengths—to make a reliable assessment or conclusion with any certainty. Some of the updated safety recommendations are marginal, questionable, and lack scientific justification from the perspective of safety protection."

--
5G Cellular Standards. Total Radiobiological Assessment of the Danger of Planetary Electromagnetic Radiation Exposure to the Population (in Russian)Y.G. Grigoriev, A.S. Samoylov. 5G-cellular standards. Total radiobiological assessment of the danger of planetary electromagnetic radiation exposure to the population. G384; М.: SRC — FMBC, Moscow, 2020.
Abstract

The book discusses the implementation of the 5G-standard in the cellular communication system. 5G-technology works with millimeter waves (MMW) with simultaneous distribution of the IoT (Internet of Things) program — Internet connection between «things», both for home use, and other objects, for example, in transport, in production. MMW are easily shielded. Given this, only the skin and sclera of the eyes will be affected.
A new radiobiological approach to hazard assessment of the 5G-standard is presented. The significance of radiobiological criteria and the degree of risk are considered, taking into account the appearance of new critical organs and the load on existing critical organs and systems during lifetime exposure to EMF in the population. This point of view of the authors is used to assess the total radiobiological danger of planetary electromagnetic radiation exposure to the population.
Ways of possible reduction of the electromagnetic load on the population are suggested.

Relevance of the book by L.A. Ilyin, RAS academician
Both in Russia and in countries abroad, there have been active discussions over the past few years about a promising proposal for optimizing cellular communications — the planetary introduction of a new 5G-standard that will guarantee fast transmission of a large amount of data. For this purpose, millimeter waves (MMW) will be used.
The techno-economic advantage of this offer is obvious and widely reported by the media in many countries. However, the degree of danger of this type of electromagnetic radiation to public health and the environment remains unclear.
Unfortunately, the appeals of scientists and medical professionals to the UN and the European Union about the need for preliminary medical and biological research before implementing the 5G-standard remain beyond real implementation. A number of countries refuse to place the 5G-standard on their territory.

Book by Yu.G. Grigoriev and A.S. Samoylov "5G-CELLULAR STANDARD. TOTAL RADIOBIOLOGICAL ASSESSMENT OF THE DANGER OF PLANETARY ELECTROMAGNETIC RADIATION EXPOSURE TO THE POPULATION" considers the implementation of the 5G-standard in the cellular communication system. Unlike existing wireless technologies 2G, 3G and 4G, which use electromagnetic fields of the radio frequency range, the 5G-standard works with millimeter waves with simultaneous distribution of the IoT (Internet of Things) program — Internet communication between "objects", both for home use and other objects, for example, in transport and in production.
For stable delivery of MMW to the entire territory of our planet, Earth satellites are used. It is planned to launch 4,425 satellites for the implementation of the universal Internet access program, but there are already 800 satellites in space under this program. It should be noted that there are currently several thousand satellites in orbit, which is of great concern to astronomers and the security service of manned space flights in Russia.
In fact, the entire population will be trapped for life in the electromagnetic grid of millimeter waves and no one will be able to avoid their impact.

MMW are easily shielded. Naturally, to cover a certain area with a millimeter cell, you will need to increase the number of base stations (BS). For example, with a cell radius of only 20 meters, you will need about 800 base stations per square kilometer and located 3-5 meters from the consumer. This is in sharp contrast, for example, with 3G and 4G-standards, which use large cells and have ranges from 2 to 15 km or more.

Given that MMW is absorbed in biotissues at a depth of up to 2 mm, only the skin and sclera of the eyes will be affected by them. Therefore, the authors rightly believe that when assessing the risk of MMV, it is necessary to take into account the appearance of new critical organs — the skin and eyes. The skin is a very complex biostructure, has a large number of receptors and is actually a "bio-relay" between the external environment and the functional state of the body.
Naturally, the introduction of 5G-technology raises new questions. First, the technical part of providing this type of communication. A significantly larger number of micro-antenna base station antennas per unit area with satellite support is needed. Second, there is a lack of a consistent methodology for hygienic rationing. Third, there are only assumptions about possible biological effects in the lifetime impact of MMW on populations and ecosystems. There are no data on possible bioeffects with constant exposure to MMW on the skin and sclera of the eyes. Targeted research is still not carried out both in Russia and abroad.

There are different perspectives on the assessment of the dangers of this new technology. The International Commission on Non-ionizing Radiation Protection (ICNIRP) and the Federal Communications Commission (FCC) assess the hazard only by adding the absorbed dose to existing standards. This is a small addition, and therefore the existing FCC and ICNIRP standards, approved in 1996, are not being revised. International standards, despite criticism from the scientific community and the European Union, have remained unchanged for more than 20 years.
The authors of the reviewed book consider this approach erroneous, because in this case, the radiation load on new critical organs — the skin and eyes--is not taken into account. They considered the significance of radiobiological criteria and the degree of risk, taking into account the emergence of new critical organs and the load on existing critical organs and systems, taking into account the lifetime exposure of the population to EMF. From this point of view, the book presents an assessment of the total radiobiological danger of planetary electromagnetic radiation exposure to the population.

The book offers new ways to reduce the electromagnetic load, taking into account 5G on the population. It is necessary to explain to the population that EMF is considered harmful and their safety is regulated by certain hygiene standards.

Exposure to EMF that exceeds these standards may negatively affect the health of the mobile user. In this regard, the population should strictly follow the existing hygiene recommendations. However, most people perceive gadgets simply as an element of convenient everyday communication without time limits, as a toy for children, for entertainment, using cellular communication without the need. The population should understand that by violating hygiene recommendations, they are putting themselves at a certain risk. This danger must be persistently explained and, above all, through the media. It is recommended to introduce such a concept as "The conscious risk". This is the first generalization on the problem of the danger of 5G-technologies, both in Russia and abroad.
Open access book (in Russian; 196 pp. pdf): https://bit.ly/Grigoriev5G
My comments: A considerable amount of research suggests that exposure to millimeter waves can affect many organs of the body, not just the skin and the eyes.

--
Electromagnetic fields, 5G and health: what about the precautionary principle?
John William Frank. Electromagnetic fields, 5G and health: what about the precautionary principle? J Epidemiol Community Health. Published Online First: 19 January 2021. doi: 10.1136/jech-2019-213595.
Abstract

New fifth generation (5G) telecommunications systems, now being rolled out globally, have become the subject of a fierce controversy. Some health protection agencies and their scientific advisory committees have concluded that there is no conclusive scientific evidence of harm. Several recent reviews by independent scientists, however, suggest that there is significant uncertainty on this question, with rapidly emerging evidence of potentially harmful biological effects from radio frequency electromagnetic field (RF-EMF) exposures, at the levels 5G roll-out will entail. This essay identifies four relevant sources of scientific uncertainty and concern: (1) lack of clarity about precisely what technology is included in 5G; (2) a rapidly accumulating body of laboratory studies documenting disruptive in vitro and in vivo effects of RF-EMFs—but one with many gaps in it; (3) an almost total lack (as yet) of high-quality epidemiological studies of adverse human health effects from 5G EMF exposure specifically, but rapidly emerging epidemiological evidence of such effects from past generations of RF-EMF exposure; (4) persistent allegations that some national telecommunications regulatory authorities do not base their RF-EMF safety policies on the latest science, related to unmanaged conflicts of interest. The author, an experienced epidemiologist, concludes that one cannot dismiss the growing health concerns about RF-EMFs, especially in an era when higher population levels of exposure are occurring widely, due to the spatially dense transmitters which 5G systems require. Based on the precautionary principle, the author echoes the calls of others for a moratorium on the further roll-out of 5G systems globally, pending more conclusive research on their safety.

Conclusions and recommendation

In assessing causal evidence in environmental epidemiology, Bradford Hill himself pointed out that 'the whole picture matters;' he argued against prioritising any subset of his famous nine criteria for causation. One's overall assessment of the likelihood that an exposure causes a health condition should take into account a wide variety of evidence, including 'biological plausibility'. After reviewing the evidence cited above, the writer, an experienced physician-epidemiologist, is convinced that RF-EMFs may well have serious human health effects. While there is also increasing scientific evidence for RF-EMF effects of ecological concern in other species, both plant and animal, these have not been reviewed here, for reasons of space and the author's disciplinary limitations. In addition, there is convincing evidence, cited above, that several nations' regulatory apparatus, for telecommunications innovations such as the 5G roll-out, is not fit for purpose. Indeed, significant elements in that apparatus appear to have been captured by vested interests. Every society's public health—and especially the health of those most likely to be susceptible to the hazard in question (in the case of EMFs, children and pregnant women)—needs to be protected by evidence-based regulations, free from significant bias.

Finally, this commentary would be remiss if it did not mention a widely circulating conspiracy theory, suggesting that 5G and related EMF exposures somehow contributed to the creation or spread of the current COVID-19 pandemic. There are knowledgeable commentators' reports on the web debunking this theory, and no respectable scientist or publication has backed it. Indeed, combatting it is widely viewed by the scientific community as critical to dealing with the pandemic, as conspiracy theorists holding this view have already carried out violent attacks on mobile phone transmission facilities and other symbolic targets, distracting the public and authorities at a time when pandemic control actions are paramount. 42 This writer completely supports that view of the broader scientific community: the theory that 5G and related EMFs have contributed to the pandemic is baseless.

It follows that, for the current 5G roll-out, there is a sound basis for invoking 'the precautionary principle'. This is the environmental and occupational health principle by which significant doubt about the safety of a new and potentially widespread human exposure should be a reason to call a moratorium on that exposure, pending adequate scientific investigation of its suspected adverse health effects. In short, one should 'err on the side of caution'. In the case of 5G transmission systems, there is no compelling public health or safety rationale for their rapid deployment. The main gains being promised are either economic (for some parties only, not necessarily with widely distributed financial benefits across the population) or related to increased consumer convenience. Until we know more about what we are getting into, from a health and ecological point of view, those putative gains need to wait.

Open access paper: https://jech.bmj.com/content/early/2021/01/04/jech-2019-213595 or https://jech.bmj.com/content/jech/early/2021/01/04/jech-2019-213595.full.pdf

--
Chemical polarization effects of electromagnetic field radiation from the novel 5G network deployment at ultra high frequency
Ugochukwu O. Matthew, Jazuli S. Kazaure. Chemical polarization effects of electromagnetic field radiation from the novel 5G network deployment at ultra high frequency. Health Technology (Berl). 2021 Jan 27: 1-13. doi: 10.1007/s12553-020-00501-x.
Abstract
The wide-spectrum of non-ionizing, non-visible radiation emitted from the novel 5G network deployment was investigated and found liable to produce effects capable of heating up and altering human body nomenclature. The Ultra-high frequency magnetic fields, induced circulation of currents in the surrounding human body when potentially exposed. The quantum of these electromagnetic charges is influenced by the magnitude of the external magnetic field. The Magnetic fields warming is the major organic consequence of the electromagnetic fields radiofrequency radiation emitted from 5G network installation especially at a very high frequencies. From the current research, the levels of electromagnetic fields to which individuals are naturally unmasked under 4G network and 5G network technology in SCENARIO1, SCENARIO 2 and SCENARIO 3 are very negligible to alter human body dipolar chemistry. On the several findings of the research, deploying 5G network technology under the ultra-high frequency above 20 GHz will produce effect that will heat up the human body tissues due to electromagnetic field inducement since human body is dipolar in nature. The research established that while the current digital society will continue investment into 5G network technology, caution must be applied not to deploy 5G network under ultra-high frequency above 20 GHz due to its adverse health effects.
Conclusions

From the knowledge and principle of electromagnetism, human beings are constituted of substantial amount of oriented cells with diverse electromagnetic field attributes. The Biological attributes of the human tissue under diverse electromagnetic radiative emission are studied and that had provided the basis upon which the current research on the effects of electromagnetic fields on the human body. The heating consequences of the radio electromagnetic waves from 5G network technology deployment had formed the fundamental basis for current research. On the several findings of the research, deploying 5G network technology under the ultra-high baseband above 20 GHz will produce effects such as heating up of the body tissues due to electromagnetic field inducement on the account that human body is dipolar in nature. The effects will extend to produce dielectric polarization, ionic polarization, interfacial polarization and orientational polarization. This is generally on the account that variations on dielectric properties of biological tissues with the frequency of the electromagnetic field inducement are very dissimilar. While it is very imperative to determine the frequency distribution in deploying the novel 5G network to avoid adverse dielectric dispersion that may flow into the human body.

Open access paper: https://www.springerprofessional.de/en/chemical-polarization-effects-of-electromagnetic-field-radiation/18805704

--
New IEEE paper questions safety of exposure to 5G cell phone radiation
There has been considerable public pressure in many countries including the U.S. to stop deployment of 5G due to potential health risks. Most of the attention has focused on the cell towers or base stations; however, the safety of using 5G cell phones and other 5G personal devices may be an even greater concern due to the proximity of these devices to our bodies.
A new peer-reviewed paper, "Human Electromagnetic Field Exposure in 5G at 28 GHz," questions the safety of exposure to 5G millimeter waves. The authors found in a simulation study that use of a 5G cell phone at 28 GHz could exceed ICNIRP (i.e. international) radio frequency exposure limits when held at 8 centimeters (i.e., 3 inches) or closer to the head or body. Whereas the ICNIRP exposure limit for the Specific Absorption Rate (SAR) is 2.0 watts per kilogram averaged over 10 grams of tissue, the FCC limit is 2-3 times more conservative, namely the SAR limit is 1.6 watts per kilogram averaged over only 1 gram of tissue. This means compliance with the FCC exposure limit would require a greater separation distance from the body than 8 centimeters in the U.S.

Although there have been numerous peer-reviewed papers that have raised serious concerns about the safety of exposure to 5G radiation and/or millimeter waves, this new paper is significant because it is published in an industry-sponsored journal, the November/December issue of IEEE Consumer Electronics Magazine.
Seungmo Kim, Imtiaz Nasim. Human Electromagnetic Field Exposure in 5G at 28 GHz. IEEE Consumer Electronics Magazine. 9(6):41-48. Nov. 1 2020. DOI: 10.1109/MCE.2019.2956223.
Abstract
The fifth-generation wireless (5G) has already started showing its capability to achieve extremely fast data transfer, which makes itself considered to be a promising mobile technology. However, concerns have been raised on adverse health impacts that human users can experience in a 5G system by being exposed to electromagnetic fields (EMFs). This article investigates the human EMF exposure in a 5G system and compares them with those measured in the previous-generation cellular systems. It suggests a minimum separation distance between a transmitter and a human user for keeping the EMF exposure below the safety regulation level, which provides consumers with a general understanding on the safe use of 5G communications.

https://ieeexplore.ieee.org/document/9090831
Excerpts

"First, we discuss the human EMF exposure in the downlink as well as the uplink. Most of the prior work studies the uplink only, while hardly paying attention to EMF emissions generated by BSs [base stations or cell towers] in a 5G network. Recall the aforementioned changes that the 5G adopts: 1) operation at higher carrier frequencies; 2) reduction of cell size (which leads to increase in number of BSs; and 3) concentration of higher EMF energy into an antenna beam. They all imply that in 5G, unlike the previous-generation wireless systems, the downlink can also be a threat to human health as well as the uplink.

Second, we suggest that both SAR [Specific Absorption Rate] and PD [power density] should be used to display human EMF exposure for a wireless system. The reason is that SAR captures an amount of EMF energy that is actually "absorbed" into human tissues, whereas PD is an efficient metric only to present the EMF energy being introduced to a human user.

Third, we present an explicit comparison of human EMF exposure in 5G to those in the currently deployed wireless standards....

Fourth, we consider the maximum possible exposure that a human user can experience...."
"... in a 5G network, a consumer is likely to be exposed to high EMF energy more consistently. Nevertheless, it is easier to apply a "compliance distance" [17] in a downlink than in an uplink. Thus, this article suggests 1) an overhaul of the compliance distances defined in different standards and 2) the consumers' discretion on being close to a BS...."
"... the fact that a high-frequency EMF cannot penetrate deep into human skin does not mean that it is not dangerous. Specifically, although the penetration is limited only at the skin surface, the SAR (illustrated as a heat map in Figure 4) can be higher within the concentrated area, which can cause subsequent health problems such as skin heating."
Downlink vs. Uplink

"Figure 3(c) and (d) compare PD and SAR in uplink to the ICNIRP guidelines set at 10 W/m2 and 2W/kg, respectively. PD and SAR are remarkably higher in uplink than those in downlink, shown via a comparison of the results for uplink to those for downlink shown in Figure 3(a) and (b). It is attributed to smaller separation distance between a transmitter and a human body. Imagine one talking on a voice call; it is a "direct" physical contact of the phone and the head!

Also, it is significant to notice that no regulation exists at 28 GHz where this article investigates for 5G. As such, we refer to the ICNIRP's guideline that is set to be 2 W/kg by ICNIRP[11] at a frequency "below 10 GHz." In Figure 3(d), it provides a ""inferred" understanding on SAR in an uplink. The zoom-in look shown in Figure 3(d) suggests that in 5G, use of a handheld device within the distance of 8 cm causes an EMF absorption exceeding 2 W/kg, which would have been prohibited if the carrier frequency was lower than 10 GHz. This implies the gravity of human EMF exposure in an uplink of 5G."

Conclusion

"This article has discussed human EMF exposure in 5G operating at 28 GHz, while most of the prior work focuses only on the technological benefits that the technology brings. Considering the significance of wireless technologies in our daily life, the potential danger of using them should also be emphasized for sustainable advancement of the technologies. In this article, the first case study has demonstrated how much EMF exposure is caused in a 5G system compared to 4G and 3.9G. Then, the latter case study has suggested an adequate separation distance from a transmitter, in order to keep a human user from being exposed to EMF below a regulatory guideline. This article is expected to ignite continued interest in overarching research on the design of future wireless systems that achieve high performance while keeping consumer safety guaranteed.

However, considering the gravity of this issue, we suggest several directions to be achieved in our future research.

  • Human EMF exposure mitigation strategy: We are particularly interested in exploiting the technical features in future wireless systems—i.e., a larger number of BSs within a unit area. Such a paradigm change will enable a holistic, network-based approach to mitigate the EMF exposure as an optimization problem with a set of constraints representing the PD, SAR, and skin-temperature elevation.

  • Further studies regarding exact human health impacts caused by EMF exposure: The particular focus will be put on 1) skin dielectric effect with respect to frequency and 2) the effect of radiation when the body is covered with clothing or garment materials."

--
Modelling of Total Exposure in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios

Sven Kuehn, Serge Pfeifer, Beyhan Kochali, Niels Kuster. Modelling of Total Exposure in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios. Final Report of Project CRR-816. A report on behalf of the Swiss Federal Office for the Environment (FOEN). Zurich, IT'IS Foundation. 24 June 2019.
Executive Summary

In January 2019, the Swiss Federal Office for the Environment (FOEN) mandated the IT'IS Foundation to evaluate the total human exposure in hypothetical 5G mobile networks for varied topologies and user scenarios to identify factors that would minimize the total exposure of the population. In this study, total exposure is defined as the combined exposure from network base stations, the user's own device, as well as bystanders' mobile devices.

The influence of various factors on total exposure in mobile communication networks (as defined above) was modeled and analyzed with the help of the Monte Carlo simulation technique. Total exposure is described as the local peak specific absorption rate (SAR) spatially averaged over any 10 g of tissue mass (psaSAR10g) averaged over a period of 6 minutes. The unit psaSAR10g was chosen because it defines the governing basic restriction for wireless exposure as the whole-body average SAR limits (wbaSAR) are intrinsically met if the limits of local exposure are satisfied. The averaging duration of 6 minutes constitutes the internationally accepted averaging time to prevent thermal hazards at frequencies below 6 GHz as instant values have little justification. However, it should be noted that some regulators define shorter averaging time periods, e.g., the US Federal Communications Commission (FCC) of 100 s.

In a first step, we analyzed the tissue-specific exposure as a function of frequency. The preliminary dosimetric study showed that exposure of the human brain to the 3.6 GHz band, that has been recently added to the Swiss mobile communication frequencies, is reduced by a factor of >6 for the tissue averaged SAR when compared to mobile network operation at <1 GHz. This reduction is due to the smaller penetration depth at higher frequencies. This conclusion, however, does not apply to exposed tissues close to the surface or skin (eyes, testicles, etc.) when the peak SAR in this tissue is evaluated. The peak SAR in the grey matter remains in approximately the same order of magnitude ( 3 dB) over all frequencies but the area of high exposure is reduced at 3.6 GHz.

In a second step, we used data measured in 4G systems and analyzed the latest mobile network standards to extrapolate the exposures for various 5G network scenarios. These measured data were also used to extrapolate the exposure to the future development of data usage in 5G networks.

Specifically, we analyzed the effect on the total exposure of (i) the network topology by varying the cell size and amount of indoor coverage in the network, as well as the usage of (ii) an individual's own device, and (iii) devices of close bystanders.

The results – based on simulations of more than 200 different exposure scenarios – reveal that, for all user types, except for non-users (including passive mobile phone users and users dominantly using downlink data traffic, e.g., video streaming), total exposure is dominated by the person's own mobile device. Compared to non-users, the exposure is increased (i) for light users (with 100 MByte uplink data per day) by 6 – 10 dB (or a factor of 4 to 10), (ii) for moderate users (with 1 GByte uplink data per day) by 13 – 25 dB (or a factor of 20 to >300), and (iii) for heavy users by 15 – 40 dB (or a factor of 30 to >10000). Further, the results show that peak exposure of non-users is not defined by exposure to base stations but by exposure to mobile devices of close bystanders in urban areas resulting in 6 dB (or a factor of 4) higher exposure than from a nearby base station antenna.

While a reduction of the mobile cell size leads to a reduction in total exposure by a factor of 2 to10 for people actively using their mobile devices, this might also lead to a small increase by a factor of 1.6 in total exposure of non-users due the generally increased incident signal levels from the surrounding base stations.

Similarly, the exposure of active users can be reduced by a factor of 4 to 600 by increasing the indoor network coverage. Yet, in line with the results for the mobile cell sizes, increased indoor coverage will also lead to increased exposure of non-users by a factor of 2 to 10. This increase, however, starts at a level 1000 times lower than the typical total exposure of active users.

The results of this study show that the personal mobile device is the dominant exposure source for active mobile network users. Besides a person's own usage behavior, total exposure is also closely linked to the network infrastructure. Generally speaking, a network with a lower path loss, i.e., smaller cells and additional indoor coverage, helps to reduce total exposure. The exposure per transmitted bit is reduced by a factor of <3 by the increased spectral efficiency of the 5G technology, and the reduced penetration depth associated with the new bands at 3.5 – 3.8 GHz.

The results presented above are limited due to the network data that has been used and the definition of total exposure as stated in this report. Furthermore, it only considers time-averaged (6 min) and not instant exposures. This study does not consider (i) the effect of upcoming massive MIMO systems in 5G networks, (ii) alternative data transmission links, for instance the use of Wireless Local Area Network (WLAN), and (iii) millimeter wave frequencies in 5G mobile networks.
Conclusions
The results of this study show that the absorption of energy by the human brain, resulting from exposure to the 3.6 GHz band newly added to the Swiss mobile communication frequencies, is reduced by a factor >6 for the tissue averaged SAR when compared to mobile networks operating at <1 GHz, and by a factor of >2 when compared to the frequency bands at 1.8 – 2GHz. For deep brain regions, the reduction is much larger.
The reduced exposure for these regions is due to lower penetration depths at higher frequencies. Close to the surface (eyes, testicles, etc.) the exposure can be higher. At the most exposed surface of the grey matter, the values remain approximately 3 dB over all frequencies whereas the area of high exposure is reduced.
More than 200 Monte Carlo simulated exposure scenarios have been analyzed to evaluate total human exposure in 5G Networks for different topologies and user scenarios. The results show that for all users (except non-users), the total exposure is dominated by a person's own mobile device. Compared to a non-user, the exposure is increased for a light user (with 100 MByte uplink data per day) by 6 – 10 dB (or by a factor 4 to 10), for a moderate user (with 1 GByte uplink data per day) by 13 – 25 dB (or by a factor of 20 to >300), and for a heavy user by 25 – 40 dB (or a factor of 300 to >10000). The peak exposure of non-users is further not defined by exposure to surrounding base stations but by mobile devices of close bystanders in urban areas, resulting in 6 dB (or a factor of 4) higher exposure than from a nearby base station antenna.

Reducing the diameter of the mobile cell leads to a decreased overall exposure by a factor of 2 to 10 for people who actively use their mobile devices. At the same time, the reduction in cell size might lead to a small increase by a factor <2 in exposure for non-users. The exposure of active users can be reduced by factors ranging from 4 to 600 by increasing indoor network coverage which, in turn, will be linked to increased exposure of non-users by a factor of 2 to 10. However, such an increase is by a factor 1000 lower than the typical exposure of active users. The results of this study are limited due to the network data that has been used and the definition of total exposure as stated earlier in this report. This study does not consider (i) the effect of upcoming massive MIMO and multi-user MIMO systems in 5G networks, (ii) alternative data transmission links – for instance the use of Wireless Local Area Network (WLAN) and (iii) millimeter wave frequencies in 5G mobile networks.

In summary, the results of this study show that the user's own mobile device is the dominant source of exposure for the population of active mobile network users. Besides personal usage patterns, totl exposure is also closely linked to the network infrastructure. Generally speaking, a network that decreases the path loss by means of smaller cells and additional indoor coverage will help to reduce the total exposure of the population.

https://www.bafu.admin.ch/dam/bafu/en/dokumente/elektrosmog/externe-studien-berichte/modelling-of-total-exposure-in-hypothetical-5g-mobile-networks-for-varied-topologies-and-user-scenarios.pdf.download.pdf/Modelling%20of%20Total%20Exposure%20in%20Hypothetical%205G%20Networks%20-%20Schlussbericht.pdf
--
Oct 14, 2020
5G Research from the EMF-Portal Archive
As of June 1, 2020, the EMF-Portal archive listed 133 papers and letters to the editor published in professional journals and presentations at professional conferences that focus on 5G research. Although most discuss technical or dosimetric issues (n = 92), 41 citations address other issues including potential biologic or health effects.
In all, the EMF-Portal archive references more than 30,000 publications and presentations on non-ionizing electromagnetic fields. The Portal is a project based at the University Hospital RWTH Aachen, Germany.

Currently, no peer-reviewed, empirical studies of the biologic or health effects from actual exposure to 5G radiation have been published. Hence, those who claim that 5G is safe because it complies with radiofrequency exposure guidelines are engaging in sophistry.
These guidelines were designed to protect the population from short-term heating (or thermal) risks. However, numerous peer-reviewed studies have found adverse biologic and health effects from exposure to low-intensity or non-thermal levels of electromagnetic fields (EMF). Hence, more than 240 EMF scientists who have signed the International EMF Scientist Appeal have recommended that "guidelines and regulatory standards be strengthened":
"Numerous recent scientific publications have shown that EMF affects living organisms at levels well below most international and national guidelines….
The various agencies setting safety standards have failed to impose sufficient guidelines to protect the general public, particularly children who are more vulnerable to the effects of EMF."
To download the list of 133 papers and presentations: bit.ly/EmfPortal5G
--
5G Wireless Deployment and Health Risks: Time for a Medical Discussion
Priyanka Bandara, Tracy Chandler, Robin Kelly, Julie McCredden, Murray May, Steve Weller, Don Maisch, Susan Pockett, Victor Leach, Richard Cullen, Damian Wojcik. 5G Wireless Deployment and Health Risks: Time for a Medical Discussion in Australia and New Zealand. ACNEM Journal. 39(1). July 2020.
No abstract.
Excerpts

"There is an urgent need for clinicians and medical scientists in the Australia-New Zealand region to engage in an objective discussion around the potential health impacts of the fifth generation (5G) wireless technology currently being deployed. The statements of assurance by the industry and government parties that dominate the media in our region are at odds with the warnings of hundreds of scientists actively engaged in research on biological/health effects of anthropogenic electromagnetic radiation/fields (EMR/EMF). (1) There have been worldwide public protests as well as appeals by professionals and the general public (2) that have compelled many cities in Europe to declare moratoria on 5G deployment and to begin investigations. In contrast, there is no medically-oriented professional discussion on this public health topic in Australia and New Zealand, where 5G deployment is being expedited. 5G is untested for safety on humans and other species and the limited existing evidence raises major concerns that need to be addressed. The vast body of research literature on biological/health effects of 'wireless radiation' (radiofrequency EMR) (3,4) indicates a range of health-related issues associated with different types of wireless technologies (1G-4G, WiFi, Bluetooth, Radar, radio/TV transmission, scanning and surveillance systems). These are used in a wide range of personal devices in common use (mobile/cordless phones, computers, baby monitors, games consoles etc) without users being aware of the health risks. Furthermore, serious safety concerns arise from the extra complexity of 5G as follows:
• 5G carrier waves use a much broader part of the microwave spectrum including waves with wavelengths in the millimetre range (hence called 'millimetre waves') which will be used in the second phase of 5G). Until now, millimetre waves have had limited applications such as radar, point-to-point communications links and non-lethal military weapons. (5)
• Extremely complex modulation patterns involving numerous frequencies form novel exposures.
• Beam formation characteristics can produce hotspots of high unknown intensities.
• A vast number of antenna arrays will add millions of microwave transmitters globally in addition to the existing RF transmitters thereby greatly increasing human exposure. This includes 5G small cell antennas to be erected every 200-250 metres on street fixtures, such as power poles and bus shelters, many of which will be only metres from homes with the homeowners having absolutely no say in where the antennas will be located.

This massive leap in human exposure to RF-EMR from 5G is occurring in a setting where the existing scientific evidence overwhelmingly indicates biological interference, (3,4) therefore suggesting the need to urgently reduce exposure...."
"As for the new 5G technology, it is concerning that leading experts in the technical field (6) have reported the possibility of damaging thermal spikes under the current exposure guidelines (from beam forming 5G millimetre waves that transfer data with short bursts of high energy) and some animals and children may be at an increased risk due to smaller body size. Even working within the entirely thermally-based current regulatory process, they pointed out 5G millimetre waves "may lead to permanent tissue damage after even short exposures, highlighting the importance of revisiting existing exposure guidelines". (6) Microwave experts from the US Air Force have reported on 'Brillouin Precursors' created by sharp transients at the leading and trailing edges of pulses of mm waves, when beam forming fast millimetre waves create moving charges in the body which penetrate deeper than explained in the conventional models, and have the potential to cause tissue damage. (7) In fact, concerns about moving charges affecting deep tissue are associated with other forms of pulsed RF radiation currently used for wireless communications. This may be one factor explaining why the pulsed radiation used in wireless communication technologies is more biologically active than continuous RF radiation. (8) Such effects of high energy 5G mm waves could have potentially devastating consequences for species with small body size and also creatures that have innate sensitivity to EMF, which include birds and bees that use nature's EMFs for navigation. (9) Unfortunately, non-thermal effects and chronic exposure effects are not addressed in the current guidelines. (10)"
"Our investigation into the scientific literature has found RF-EMR to be a potent inducer of oxidative stress even at so-called "low-intensity" exposures (which are in fact billions of times higher than in nature (26)) such as those from commonly used wireless devices. An analysis (22) of 242 publications (experimental studies) which had investigated endpoints related to oxidative stress - biomarkers of oxidative damage such as 8-oxo-2'-deoxyguanosine (indicating oxidative DNA damage) and/or altered antioxidant levels - revealed that 216 studies (89%) had reported such findings (Fig. 1). This evidence base on RF-associated oxidative stress from 26 countries (only one study from Australia and none from New Zealand) is relatively new and mostly post 2010, i.e. after the WHO's International Agency for Research on Cancer (IARC) classified RF-EMR as a Group 2B possible carcinogen. Moreover, 180 studies out of the 242 (74.7%) were in vivo studies (including several human studies) which presents strong evidence.
"Proponents of 5G often dismiss concerns about health risks claiming that 5G microwaves will minimally penetrate the skin and therefore any effects are limited to minor skin heating (and they acknowledge that there is some uncertainty around heating effects on the eyes). The medical community understands that skin is the largest organ of the human body and a key part of the neuro-immune and neuro-endocrine systems. Natural UVA and UVB (also so-called non-ionizing radiation) that penetrate the skin less than 5G millimetre waves have profound effects on health and wellbeing of humans. Therefore, artificial 5G waves must be subjected to rigorous safety testing."
"Unfortunately, the questionable conduct of regulatory agencies such as ARPANSA and WHO's international EMF Project (43) with conflicts of interest due to funding links to the wireless industry (44) remains to be investigated. More open questioning and protests are appearing in Europe and North America where there is some level of engagement on the part of government bodies in response to warnings of adverse health effects of anthropogenic EMF/EMR by expert medical bodies such as EUROPAEM and AAEM (31,32) (despite industry opposition)."
--

5G Communication Technology and Coronavirus Disease [Health Matters]
James C. Lin. 5G Communication Technology and Coronavirus Disease [Health Matters]. IEEE Microwave Magazine, 21(9):16-19. Sep 2020.

No abstract.
Excerpts
"The fact is that there is no link between the COVID-19 virus and 5G cell phone technology or 5G base-station communication towers. These are totally different constructs; they are not even close. None of the conspiracy theories that try to link 5G and the coronavirus make any sense scientifically."
"For biological matters, it is not obvious whether the biological responses to high-band 5G radiation will be akin to earlier generations or low-band 5G radiations, given the distinctive characteristics of mm-wave [millimeter wave] and its interaction with the complex structure and composition of pertinent biological tissues."
"It is important to note that the recent NTP and Ramazzini RF exposure studies presented similar findings in terms of heart schwannomas and brain gliomas. Thus, two relatively well-conducted RF exposure studies employing the same strain of rats showed consistent results in significantly increased cancer risks. More recently, an advisory group for the IARC has recommended including reevaluation of the carcinogenicity of human exposure to RF radiation, with high priority, in their monograph series [7]."
"... the 5G frequency domain is divided into low, mid, and high bands. The operating frequencies at low and mid bands can overlap with the current 4G band at 6 GHz or below. Thus, the biological effects of RF radiation at these lower frequency bands are likely to be comparable to 2, 3, or 4G. However, the scenarios of high-band 5G—especially for 24–60 GHz in the mm-wave region for high-capacity, short-range wireless data communications—are relatively recent arrivals and pose considerable challenge to health risk assessment. There is a paucity of data on permittivity and coupling, such as reflection, transmission, and induced energy deposition, in biological tissues in the mm-wave frequency band."
"Induced energy deposition increases with mm-wave frequency. However, at the highest frequencies, the energy deposition in the deeper regions inside the skin is lower because of the reduced penetration depth at these frequencies [11]."
"A recently published review [13] included 45 in vivo studies conducted using laboratory animals and other biological preparations and 53 in vitro studies involving primary cells and cultured cell lines.... This industry-supported review noted that, aside from the wide frequency ranges, the studies were diverse both in subjects and in the end points investigated. Biological effects were observed to occur both in vivo and in vitro for different biological endpoints studied. Indeed, the percentage of positive responses at nonthermal levels in most frequency groups was as high as 70%."
"While many of these investigations with mm-wave exposures reported biological responses, there is inconsistency in the dependence of biological effects and mm-wave intensity used for exposure. Also, the reported in vitro and in vivo laboratory investigations are modest in number and diverse in subject matter, considering the wide 5G/mmwave frequency domain. The jury on the biological effect or health impact is still out on 5G. Moreover, there is a lack of ongoing controlled laboratory investigations. Simply put, the existing scientific data are too limited for any reliable assessment or conclusion with certainty."
https://ieeexplore-ieee-org/document/9154657

--

Setting Guidelines for Electromagnetic Exposures and Research Needs
Barnes F, Greenebaum B. Setting Guidelines for Electromagnetic Exposures and Research Needs. Bioelectromagnetics. 2020 Jul;41(5):392-397. doi: 10.1002/bem.22267.
Abstract

Current limits for exposures to nonionizing electromagnetic fields (EMF) are set, based on relatively short-term exposures. Long-term exposures to weak EMF are not addressed in the current guidelines. Nevertheless, a large and growing amount of evidence indicates that long-term exposure to weak fields can affect biological systems and might have effects on human health. If they do, the public health issues could be important because of the very large fraction of the population worldwide that is exposed. We also discuss research that needs to be done to clarify questions about the effects of weak fields. In addition to the current short-term exposure guidelines, we propose an approach to how weak field exposure guidelines for long-term exposures might be set, in which the responsibility for limiting exposure is divided between the manufacturer, system operator, and individual being exposed.

https://pubmed.ncbi.nlm.nih.gov/32311139/
Excerpts
"Both IEEE and ICNIRP base their analyses on rigorous reviews of the scientific literature and on established firm evidence of health effects in humans. The present guidelines are based on acute exposures; to date both IEEE and ICNIRP have not found sufficient evidence to include health effects of long-term exposures at lower levels. However, over the last 20 years the evidence has become extremely strong that weaker EMF over the whole range for frequencies from static through millimeter waves can modify biological processes. There is now solid experimental evidence and supporting theory showing that weak fields, especially but not exclusively at low frequencies, can modify reactive free radical concentrations and that changes in radical concentration and that of other signaling molecules, such as hydrogen peroxide and calcium, can modify biological processes …"
"The evidence that weak radiofrequency (RF) and low-frequency fields can modify human health is still less strong, but the experiments supporting both conclusions are too numerous to be uniformly written off as a group due to poor technique, poor dosimetry, or lack of blinding in some cases, or other good laboratory practices. Based on recent studies by the National Toxicology Program (NTP) [SmithRoe et al., 2020] and the Ramazzini Foundation [Falcioni et al., 2018] as well as laboratory data, the International Agency for Research on Cancer (IARC) has declared RF fields as possible human carcinogens [IARC, 2013]. A recent paper extends the NTP studies by evaluating genotoxicity in animals exposed to fields at or over the guideline limits and found DNA damage in Comet assays [SmithRoe et al., 2020]. Many other papers indicate similar results, but many negative results are also in the literature."

"PROPOSED APPROACH TO SETTING EXPOSURE LIMITS

From these and other lines of solid research, the guidelines for exposure could be revised. Increased emphasis on long-term exposures may require refining the concept of dose to more flexibly combine exposure time and field intensity or energy absorbed. Eventual guidelines might suggest limiting cell phone calls to X hours per day with exposure levels above Y W/m2, and for Z days per week exposure should be less than Y W/m2 to allow the body to reset its baseline."

"What is missing in the current guidelines or regulations are guidelines for long-term exposure to weak EMF…."

"Guidelines should be set at three levels: the individual user, local company, and national or international level…. External guidance, in terms of informed recommendations or at least analysis of various intensities and styles of usage from some agency such as the Federal Communications Commission (FCC) or NIH, would be useful.

Limits on the time for operations of base stations and exposures in adjacent living spaces are not controlled by the user and must be set by competent authorities, based on scientific evidence. It is likely to be difficult to specify times when exposures to RF signals are zero or below some limit. What will be needed is being able to say with some certainty that exposure below a given level has not been shown to cause changes in body chemistry above some level. A starting point might be current levels from TV and radio stations that are large enough to give signal-to-noise ratios around 20 dB (100-fold) with typical receiving systems. Currently, mean values for the population's exposure to these systems are estimated to be around 0.1 V/m and peak exposures range up to 2 V/m, which exceed current exposure limits for a small fraction of the population. Therefore, one starting point for exposure limits might be an average of 0.1 V/m, not based on research but on practicality, until further research results dictate either a lower or higher limit."

--
Effects of 5G Wireless Communication on Human Health
Karaboytcheva M. Effects of 5G wireless communication on human health. European Parliamentary Research Service (EPRS). Briefing document: PE 646.172. March 2020.
Summary
The fifth generation of telecommunications technologies, 5G, is fundamental to achieving a European gigabit society by 2025.
The aim to cover all urban areas, railways and major roads with uninterrupted fifth generation wireless communication can only be achieved by creating a very dense network of antennas and transmitters. In other words, the number of higher frequency base stations and other devices will increase significantly.
This raises the question as to whether there is a negative impact on human health and environment from higher frequencies and billions of additional connections, which, according to research, will mean constant exposure for the whole population, including children.
Whereas researchers generally consider such radio waves not to constitute a threat to the population, research to date has not addressed the constant exposure that 5G would introduce. Accordingly, a section of the scientific community considers that more research on the potential negative biological effects of electromagnetic fields (EMF) and 5G is needed, notably on the incidence of some serious human diseases. A further consideration is the need to bring together researchers from different disciplines, in particular medicine and physics or engineering, to conduct further research into the effects of 5G.
The EU's current provisions on exposure to wireless signals, the Council Recommendation on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz), is now 20 years old, and thus does not take the specific technical characteristics of 5G into account.
In this Briefing
  • Difference between 5G and current technology
  • Regulation of electromagnetic fields and 5G exposure
  • European Parliament Research on EMF and 5G effects on human health
  • Stakeholders' views
  • The road ahead for 5G
Open access paper: https://bit.ly/EUParl5G
--
Adverse health effects of 5G mobile networking technology under real-life conditions
Kostoff RN, Heroux P, Aschner M, Tsatsakis A. Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicology Letters. 323(1):35-40. May 2020. https://doi.org/10.1016/j.toxlet.2020.01.020.



Highlights

• Identifies wide-spectrum of adverse health effects of non-ionizing non-visible radiation
• Most laboratory experiments were not designed to identify the more severe adverse effects reflective of real-life conditions
• Many experiments do not include the real-life pulsing and modulation of the carrier signal
• Vast majority of experiments do not account for synergistic adverse effects of other toxic stimuli with wireless radiation
• 5G mobile networking technology will affect not only the skin and eyes, but will have adverse systemic effects as well

Abstract

This article identifies adverse effects of non-ionizing non-visible radiation (hereafter called wireless radiation) reported in the premier biomedical literature. It emphasizes that most of the laboratory experiments conducted to date are not designed to identify the more severe adverse effects reflective of the real-life operating environment in which wireless radiation systems operate. Many experiments do not include pulsing and modulation of the carrier signal. The vast majority do not account for synergistic adverse effects of other toxic stimuli (such as chemical and biological) acting in concert with the wireless radiation. This article also presents evidence that the nascent 5G mobile networking technology will affect not only the skin and eyes, as commonly believed, but will have adverse systemic effects as well.


https://www.ncbi.nlm.nih.gov/pubmed/31991167

--
Appeals that matter or not on a moratorium on the deployment of the fifth generation, 5G, for microwave radiation
Hardell L, Nyberg R. [Comment] Appeals that matter or not on a moratorium on the deployment of the fifth generation, 5G, for microwave radiation. Molecular and Clinical Oncology. Published online January 22, 2020. https://doi.org/10.3892/mco.2020.1984.

Abstract

Radiofrequency (RF) radiation in the frequency range of 30 kHz‑300 GHz is classified as a 'possible' human carcinogen, Group 2B, by the International Agency for Research on Cancer (IARC) since 2011. The evidence has since then been strengthened by further research; thus, RF radiation may now be classified as a human carcinogen, Group 1. In spite of this, microwave radiations are expanding with increasing personal and ambient exposure. One contributing factor is that the majority of countries rely on guidelines formulated by the International Commission on Non‑Ionizing Radiation Protection (ICNIRP), a private German non‑governmental organization. ICNIRP relies on the evaluation only of thermal (heating) effects from RF radiation, thereby excluding a large body of published science demonstrating the detrimental effects caused by non‑thermal radiation. The fifth generation, 5G, for microwave radiation is about to be implemented worldwide in spite of no comprehensive investigations of the potential risks to human health and the environment. In an appeal sent to the EU in September, 2017 currently >260 scientists and medical doctors requested for a moratorium on the deployment of 5G until the health risks associated with this new technology have been fully investigated by industry‑independent scientists. The appeal and four rebuttals to the EU over a period of >2 years, have not achieved any positive response from the EU to date. Unfortunately, decision makers seem to be uninformed or even misinformed about the risks. EU officials rely on the opinions of individuals within the ICNIRP and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), most of whom have ties to the industry. They seem to dominate evaluating bodies and refute risks. It is important that these circumstances are described. In this article, the warnings on the health risks associated with RF presented in the 5G appeal and the letters to the EU Health Commissioner since September, 2017 and the authors' rebuttals are summarized. The responses from the EU seem to have thus far prioritized industry profits to the detriment of human health and the environment.

Excerpt
In conclusion, this article demonstrates that the EU has given mandate to a 13‑member, non‑governmental private group, the ICNIRP, to decide upon the RF radiation guidelines. The ICNIRP, as well as SCENIHR, are well shown not to use the sound evaluation of science on the detrimental effects of RF radiation, which is documented in the research which is discussed above (9,10,21‑24,54,55). These two small organizations are producing reports which seem to deny the existence of scientific published reports on the related risks. It should perhaps be questioned whether it is in the realm of protecting human health and the environment by EU and whether the safety of EU citizens and the environment can be protected by not fully understanding the health‑related risks.
Open access paper: https://www.spandidos-publications.com/10.3892/mco.2020.1984/download
--
Spatial and Time Averaging Restrictions Within the Electromagnetic Exposure Safety Framework in the Frequency Range Above 6 GHz

Neufeld E, Samaras T, Kuster N. Discussion on Spatial and Time Averaging Restrictions Within the Electromagnetic Exposure Safety Framework in the Frequency Range Above 6 GHz for Pulsed and Localized Exposures. Bioelectromagnetics. 2019 Dec 30. doi: 10.1002/bem.22244.

Abstract
Both the current and newly proposed safety guidelines for local human exposure to millimeter-wave frequencies aim at restricting the maximum local temperature increase in the skin to prevent tissue damage. In this study, we show that the application of the current and proposed limits for pulsed fields can lead to a temperature increase of 10°C for short pulses and frequencies between 6 and 30 GHz. We also show that the proposed averaging area of 4 cm2 , that is greatly reduced compared with the current limits, does not prevent high-temperature increases in the case of narrow beams. A realistic Gaussian beam profile with a 1 mm radius can result in a temperature increase about 10 times higher than the 0.4°C increase the same averaged power density would produce for a plane wave. In the case of pulsed narrow beams, the values for the time and spatial-averaged power density allowed by the proposed new guidelines could result in extreme temperature increases.
https://www.ncbi.nlm.nih.gov/pubmed/31885092
Excerpts
.... In this letter, we look at limits, such as those currently proposed or recently approved for the revised ICNIRP guidelines and IEEE standard, and investigate whether such limits are consistent with the stated goals of the exposure safety frameworks of preventing excessive heating in the case of pulsed and/or localized radiation. In cases when they are not consistent, we discuss how consistency can be achieved. In line with the above mentioned safety standards and exposure guidelines, the presented analysis focuses exclusively on the magnitude of the tissue temperature increase as a risk factor and does not consider other aspects, such as the thermoelastic effect related to the rapidity of temperature increase.....
In conclusion, the results presented above demonstrate that, in the case of very short pulses, pulse‐duration‐independent limits imposed on transmitted energy density (fluence) alone cannot preclude the induction of high‐temperature increases in the skin. Pulse‐duration‐dependent limits should be applied also for pulses less than 1 s and possibly less than 30 GHz as well. Even though the amplifiers of the currently developed consumer devices will not allow the full exploitation of the limits of the guidelines, the guidelines should not implicitly rely on this, as they will be used to develop exposure assessment standards with the aim of ensuring safety of any future technology, e.g. IEC/IEEE 63195 [2018]. Accordingly, either assumption must be explicitly stated in the guidelines, or the limits should be adapted to be intrinsically safe. In the absence of limitations applied to the peak‐to‐average power ratio of pulses, it is possible to deliver to the body large amounts of energy within a very short time interval. For millimeter‐wave frequencies, where the absorption is superficial, this results in fast and dramatic temperature rises, as the step response function is proportional to the rapidly rising ... rather than the ... commonly encountered for deeper heating. As far as spatial averaging is concerned, it has been shown that an averaging area smaller than 4 cm2 should be introduced in order to avoid peak PDs in narrow beams [Neufeld and Kuster, 2018] that overheat the tissues. With increasing beam radius, e.g. at larger distances from the antenna(s), the tolerable averaging area increases rapidly, provided that there are no sharp exposure peaks. Duration‐independent limits on the fluence of pulses are not suitable. They should either be replaced by duration‐dependent fluence limits for pulses or by limits on the (temporal) peak exposure. In both cases, the limits should be set after taking narrow‐beam exposures into consideration. These limits will depend on the chosen spatial and temporal averaging schemes and the maximum temperature increase deemed acceptable. Forward‐looking knowledge about the technical needs and priorities of the industry could allow for selecting the balance between thresholds (averaging time and area, peak‐to‐average ratio, PD) to minimally impact the technological potential using the same limit‐setting framework.

--
5G mobile networks rated as "high impact" risk for insurance industry
in new Emerging Risk report from Swiss Re

Swiss Re, one of the world's leading providers of insurance and reinsurance, rated 5G as a "high impact" risk for the insurance industry that may affect property and casualty claims in more than 3 years.
Off the leash – 5G mobile networks
"5G – short for fifth generation – is the latest standard for cellular mobile communications. Providing ultrafast broadband connection with higher capacity and lower latency, 5G is not only heaven for your smartphone. It will enable wireless connectivity in real time for any device of the Internet of things (IoT), whether that be autonomous cars or sensor-steered factory. In doing so, it will allow decentralised seamless interconnectivity between devices. To allow for a functional network coverage and increased capacity overall, more antennas will be needed, including acceptance of higher levels of electromagnetic radiation. In some jurisdictions, the rise of threshold values will require legal adaptation. Existing concerns regarding potential negative health effects from electromagnetic fields (EMF) are only likely to increase. An uptick in liability claims could be a potential long-term consequence.
Other concerns are focused on cyber exposures, which increase with the wider scope of 5G wireless attack surfaces. Traditionally IoT devices have poor security features. Moreover, hackers can also exploit 5G speed and volume, meaning that more data can be stolen much quicker. A large-scale breakthrough of autonomous cars and other IoT applications will mean that security features need to be enhanced at the same pace. Without, interruption and subversion of the 5G platform could trigger catastrophic, cumulative damage. With a change to more automation facilitated by new technology like 5G, we might see a further shift from motor to more general and product liability insurance. There are also worries about privacy issues (leading to increased litigation risks), security breaches and espionage. The focus is not only on hacking by third parties, but also potential breaches from built-in hard- or software "backdoors." In addition, the market for 5G infrastructure is currently focussed on a couple of firms, and that raises the spectre of concentration risk. Potential impacts:
· Cyber exposures are significantly increased with 5G, as attacks become faster and higher in volume. This increases the challenge of defence.
· Growing concerns of the health implications of 5G may lead to political friction and delay of implementation, and to liability claims. The introductions of 3G and 4G faced similar challenges.
· Information security and national sovereignty concerns might delay implementation of 5G further, increasing uncertainty for planning authorities, investors, tech companies and insurers.
· Heated international dispute over 5G contractors and potential for espionage or sabotage could affect international cooperation, and impact financial markets negatively.
· As the biological effects of EMF in general and 5G in particular are still being debated, potential claims for health impairments may come with a long latency."
Source: Swiss Re. SONAR – New emerging risk insights. Zurich, Switzerland: Sustainability, Emerging and Political Risk Management, Swiss Re Institute, Strategy Development & Performance Management. May 2019. page 29.
https://www.swissre.com/institute/research/sonar/sonar2019.html

--
5G Deployment
Blackman C, Forge S. 5G Deployment: State of Play in Europe, USA, and Asia. Study for the Committee on Industry, Research and Energy, Policy Department for Economic, Scientific and Quality of Life Policies, European Parliament, Luxembourg, 2019.
Download the report at: https://www.europarl.europa.eu/RegData/etudes/IDAN/2019/631060/IPOL_IDA(2019)631060_EN.pdf

Excerpts

"It is becoming clear that 5G [fifth generation cellular technology] will cost much more to deploy than previous mobile technologies (perhaps three times as much) as it is more complex and requires a denser coverage of base stations to provide the expected capacity. The European Commission has estimated that it will cost €500 billion to meet its 2025 connectivity targets, which includes 5G coverage in all urban areas.
As 5G is driven by the telecoms supply industry, and its long tail of component manufacturers, a major campaign is under way to convince governments that the economy and jobs will be strongly stimulated by 5G deployment. However, we are yet to see significant "demand-pull" that could assure sales. These campaign efforts are also aimed at the MNOs [mobile network operators] but they have limited capacity to invest in the new technology and infrastructure as their returns from investment in 3G and 4G are still being recouped.
The notion of a "race" is part of the campaign but it is becoming clear that the technology will take much longer than earlier generations to perfect. China, for instance, sees 5G as at least a ten-year programme to become fully working and completely rolled out nationally. This is because the technologies involved with 5G are much more complex. One aspect, for example, that is not well understood today is the unpredictable propagation patterns that could result in unacceptable levels of human exposure to electromagnetic radiation."
"Although lower frequencies, many in the UHF [ultra high frequency] range, are being proposed for the first phase of 5G networks, much higher radio frequencies are also projected in bands traditionally used for radars and microwave links. Whether this will transpire is still open to question. These frequencies are being commercially tested by some (e.g. by AT&T in the USA at 28 GHz [gigahertz]). The new bands are well above the UHF ranges, being either in centimetric (3-30 GHz) or in millimetric bands (30-300 GHz) and popularly branded "mmWave", but present technical challenges that are expensive to solve."
"Although many 5G networks currently being piloted will use the much lower bands, those upper frequencies being proposed for the future may offer propagation ranges only in the order of hundreds or even tens of metres. Higher frequency signals are also subject to more interference from weather – rain, snow, fog – and obstacles - wet foliage or buildings and their walls. This means that, at higher frequencies, indoor use may be problematic if based on through-wall or window penetration. Consequently, re-use of the existing UHF bands and also those just above in the 3-10 GHz range ("mid-range") are emphasised today, to give 5G signals greater range with fewer technical challenges."
"With higher frequencies and shortened ranges, base stations will be more closely packed into a given area to give complete coverage that avoids "not-spots". Ranges of 20-150 metres may be typical, giving smaller coverage areas per "small cell". A cell radius of 20 metres would imply about 800 base stations per square kilometre (or small area wireless access points (SAWAPs), the term used in the European Electronic Communications Code (EECC)). That contrasts with 3G and 4G which use large or "macro" cells. Traditionally they offer ranges of 2-15 km or more and so can cover a larger area but with fewer simultaneous users as they have fewer individual channels."
5G Electromagnetic Radiation and Safety
"Significant concern is emerging over the possible impact on health and safety arising from potentially much higher exposure to radiofrequency electromagnetic radiation arising from 5G. Increased exposure may result not only from the use of much higher frequencies in 5G but also from the potential for the aggregation of different signals, their dynamic nature, and the complex interference effects that may result, especially in dense urban areas.
The 5G radio emission fields are quite different to those of previous generations because of their complex beamformed transmissions in both directions – from base station to handset and for the return. Although fields are highly focused by beams, they vary rapidly with time and movement and so are unpredictable, as the signal levels and patterns interact as a closed loop system. This has yet to be mapped reliably for real situations, outside the laboratory.
While the International Commission on Non-Ionizing Radiation Protection (ICNIRP) issues guidelines for limiting exposure to electric, magnetic and electromagnetic fields (EMF), and EU member states are subject to Council Recommendation 1999/519/EC which follows ICNIRP guidelines, the problem is that currently it is not possible to accurately simulate or measure 5G emissions in the real world."
USA
"The USA is moving towards some form of rollout of mobile broadband as 5G but not necessarily in a holistic, well-orchestrated operation. It is more a set of ad hoc commercial manoeuvres. Some of these are simply rebranding existing LTE, rather than delivering novel networks. Re-use of the LTE spectrum in the UHF ranges (300 MHz to 3 GHz) is significant. The latter decision is probably warranted by its geography of large rural spaces and high density urban centres situated more on the coasts. Thus, the insistence for 5G on high centimetric bands (25–30 GHz and higher) is probably less justified than for the dense conurbations of Asia and the EU.
A significant challenge concerns the administrative local barriers to small cell rollout. The need for many small cells implies long delays and high costs. Local regulations continue to prevail despite the FCC's mandate on a light-touch regime and minimal permit costs. This has led to a wide divide between local and central government on the principles of having to obtain permission for rollout and the charges for that. Local administrations, especially in the larger municipalities, are at loggerheads with the FCC (Zima, 2018). Several court challenges are being made to the FCC mandate of August 2018 that overrides local objections to a "one-touch" regime."
--
How Harmful is 5G?

Harald Schumann and Elisa Simantke. How harmful is 5G really? Der Tagesspiegel, Jan 15, 2019. (In German. For English translation email me at jmm@berkeley.edu.)
"5G should transfer huge amounts of data quickly. But it could also harm your health. Europe's governments ignore the danger."
Investigate Europe reports on the current state of the science and exposes the harmful roles that the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the World Health Organization's International EMF Project, and the EU Commission's Scientific Committee on New Health Risks (SCENIHR) have played in paving the way for the deployment of 5G without regard to health consequences.
Investigate Europe is a pan-European journalist team that researches topics of European relevance and publishes the results across Europe. The project is supported by several foundations, the Open Society Initiative for Europe, and readers' donations. Among the media partners for the report on 5G include "Newsweek Polska", "Diario de Noticias", "Il Fatto Quotidiano", "De Groene Amsterdamer", "Efimerida ton Syntakton", "Aftenbladet" and the "Falter". In addition to the authors, Crina Boros, Wojciech Ciesla, Ingeborg Eliassen, Juliet Ferguson, Nikolas Leontopoulos, Maria Maggiore, Leila Minano, Paulo Pena and Jef Poortmans contributed to this.

More about the project: https://www.investigate-europe.eu/publications/the-5g-mass-experiment/
https://www.tagesspiegel.de/gesellschaft/mobilfunk-wie-gesundheitsschaedlich-ist-5g-wirklich/23852384.html
Literature Reviews
5G Wireless Communication and Health Effects-A Pragmatic Review Based on Available Studies Regarding 6 to 100 GHz
Simkó M, Mattsson MO. 5G wireless communication and health effects-A pragmatic review based on available studies regarding 6 to 100 GHz. Int J Environ Res Public Health. 2019 Sep 13;16(18). pii: E3406. doi: 10.3390/ijerph16183406.

Abstract


The introduction of the fifth generation (5G) of wireless communication will increase the number of high-frequency-powered base stations and other devices. The question is if such higher frequencies (in this review, 6-100 GHz, millimeter waves, MMW) can have a health impact. This review analyzed 94 relevant publications performing in vivo or in vitro investigations. Each study was characterized for: study type (in vivo, in vitro), biological material (species, cell type, etc.), biological endpoint, exposure (frequency, exposure duration, power density), results, and certain quality criteria. Eighty percent of the in vivo studies showed responses to exposure, while 58% of the in vitro studies demonstrated effects. The responses affected all biological endpoints studied. There was no consistent relationship between power density, exposure duration, or frequency, and exposure effects. The available studies do not provide adequate and sufficient information for a meaningful safety assessment, or for the question about non-thermal effects. There is a need for research regarding local heat developments on small surfaces, e.g., skin or the eye, and on any environmental impact. Our quality analysis shows that for future studies to be useful for safety assessment, design and implementation need to be significantly improved.

Conclusions
Since the ranges up to 30 GHz and over 90 GHz are sparingly represented, this review mainly covers studies done in the frequency range from 30.1 to 65 GHz. In summary, the majority of studies with MMW exposures show biological responses. From this observation, however, no in-depth conclusions can be drawn regarding the biological and health effects of MMW exposures in the 6–100 GHz frequency range. The studies are very different and the total number of studies is surprisingly low. The reactions occur both in vivo and in vitro and affect all biological endpoints studied. There does not seem to be a consistent relationship between intensity (power density), exposure time, or frequency, and the effects of exposure. On the contrary, and strikingly, higher power densities do not cause more frequent responses, since the percentage of responses in most frequency groups is already at 70%. Some authors refer to their study results as having "non-thermal" causes, but few have applied appropriate temperature controls. The question therefore remains whether warming is the main cause of any observed MMW effects?
In order to evaluate and summarize the 6–100 GHz data in this review, we draw the following conclusions:
  • Regarding the health effects of MMW in the 6–100 GHz frequency range at power densities not exceeding the exposure guidelines the studies provide no clear evidence, due to contradictory information from the in vivo and in vitro investigations.
  • Regarding the possibility of "non-thermal" effects, the available studies provide no clear explanation of any mode of action of observed effects.
  • Regarding the quality of the presented studies, too few studies fulfill the minimal quality criteria to allow any further conclusions.
Open access paper: https://www.mdpi.com/1660-4601/16/18/3406
--

EMF safety guidelines are fraudulent: The consequences for microwave frequency exposures and 5G
Pall M. Eight repeatedly documented findings each show that EMF safety guidelines do not predict biological effects and are, therefore fraudulent: The consequences for both microwave frequency exposures and also 5G. Second Edition, May 23, 2019.

Abstract

ICNIRP, US FCC, EU and other EMF safety guidelines are all based on the assumption that
average EMF intensities and average SAR can be used to predict biological effects and therefore safety. Eight different types of quantitative or qualitative data are analyzed here to determine whether these safety guidelines predict biological effects. In each case the safety guidelines fail and in most of these, fail massively. Effects occur at approximately 100,000 times below allowable levels and the basic structure of the safety guidelines is shown to be deeply flawed. The safety guidelines ignore demonstrated biological heterogeneity and established biological mechanisms. Even the physics underlying the safety guidelines is shown to be flawed. Pulsed EMFs are in most cases much more biologically active than are non-pulsed EMFs of the same average intensity, but pulsations are ignored in the safety guidelines despite the fact that almost all of our current exposures are highly pulsed. There are exposure windows such that maximum effects are produced in certain intensity windows and also in certain frequency windows but the consequent very complex dose-response curves are ignored by the safety guidelines. Several additional flaws in the safety guidelines are shown through studies of both individual and paired nanosecond pulses. The properties of 5G predict that guidelines will be even more flawed in predicting 5G effects than the already stunning flaws that the safety guidelines have in predicting our other EMF exposures. The consequences of these findings is that "safety guidelines" should always be expressed in quotation marks; they do not predict biological effects and therefore do not predict safety. Because of that we have a multi-trillion dollar set of companies, the telecommunication industry, where all assurances of safety are fraudulent because they are based on these "safety guidelines."

Open access paper: https://bit.ly/RFguidelinesPall190523

--

5G Wireless Telecommunications Expansion: Public Health & Environmental Implications
Russell CL. 5G wireless telecommunications expansion: Public health and environmental implications. Environmental Research. 2018 Aug;165:484-495. doi: 10.1016/j.envres.2018.01.016.
Abstract

The popularity, widespread use and increasing dependency on wireless technologies has spawned a telecommunications industrial revolution with increasing public exposure to broader and higher frequencies of the electromagnetic spectrum to transmit data through a variety of devices and infrastructure. On the horizon, a new generation of even shorter high frequency 5G wavelengths is being proposed to power the Internet of Things (IoT). The IoT promises us convenient and easy lifestyles with a massive 5G interconnected telecommunications network, however, the expansion of broadband with shorter wavelength radiofrequency radiation highlights the concern that health and safety issues remain unknown. Controversy continues with regards to harm from current 2G, 3G and 4G wireless technologies. 5G technologies are far less studied for human or environmental effects.
It is argued that the addition of this added high frequency 5G radiation to an already complex mix of lower frequencies, will contribute to a negative public health outcome both from both physical and mental health perspectives.
Radiofrequency radiation (RF) is increasingly being recognized as a new form of environmental pollution. Like other common toxic exposures, the effects of radiofrequency electromagnetic radiation (RF EMR) will be problematic if not impossible to sort out epidemiologically as there no longer remains an unexposed control group. This is especially important considering these effects are likely magnified by synergistic toxic exposures and other common health risk behaviors. Effects can also be non-linear. Because this is the first generation to have cradle-to-grave lifespan exposure to this level of man-made microwave (RF EMR) radiofrequencies, it will be years or decades before the true health consequences are known. Precaution in the roll out of this new technology is strongly indicated.
This article will review relevant electromagnetic frequencies, exposure standards and current scientific literature on the health implications of 2G, 3G, 4G exposure, including some of the available literature on 5G frequencies. The question of what constitutes a public health issue will be raised, as well as the need for a precautionary approach in advancing new wireless technologies.

https://www.ncbi.nlm.nih.gov/pubmed/29655646

Conclusion
Although 5G technology may have many unimagined uses and benefits, it is also increasingly clear that significant negative consequences to human health and ecosystems could occur if it is widely adopted. Current radiofrequency radiation wavelengths we are exposed to appear to act as a toxin to biological systems. A moratorium on the deployment of 5G is warranted, along with development of independent health and environmental advisory boards that include independent scientists who research biological effects and exposure levels of radiofrequency radiation. Sound regulatory policy regarding current and future telecommunications initiative will require more careful assessment of risks to human health, environmental health, public safety, privacy, security and social consequences. Public health regulations need to be updated to match appropriate independent science with the adoption of biologically based exposure standards prior to further deployment of 4G or 5G technology.
Considering the current science, lack of relevant exposure standards based on known biological effects and data gaps in research, we need to reduce our exposure to RF EMR where ever technically feasible. Laws or policies which restrict the full integrity of science and the scientific community with regards to health and environmental effects of wireless technologies or other toxic exposures should be changed to enable unbiased, objective and precautionary science to drive necessary public policies and regulation. Climate change, fracking, toxic emissions and microwave radiation from wireless devices all have something in common with smoking. There is much denial and confusion about health and environmental risks, along with industry insistence for absolute proof before regulatory action occurs (Frentzel-Beyme, 1994; Michaels 2008). There are many lessons we have not learned with the introduction of novel substances, which later became precarious environmental pollutants by not heeding warning signs from scientists (Gee, 2009). The threats of these common pollutants continue to weigh heavily on the health and well being of our nation. We now accept them as the price of progress. If we do not take precautions but wait for unquestioned proof of harm will it be too late at that point for some or all of us?
https://www.sciencedirect.com/science/article/pii/S0013935118300161

--

Towards 5G Communication Systems: Are there Health Implications?
Di Ciaula A. Towards 5G communication systems: Are there health implications? Int J Hyg Environ Health. 2018 Apr;221(3):367-375. doi: 10.1016/j.ijheh.2018.01.011.
Highlights
• RF-EMF exposure is rising and health effects of are still under investigation. • Both oncologic and non-cancerous chronic effects have been suggested. • 5G networks could have health effects and will use MMW, still scarcely explored. • Adequate knowledge of RF-EMF biological effects is also needed in clinical practice. • Underrating the problem could lead to a further rise in noncommunicable diseases.
Abstract

The spread of radiofrequency electromagnetic fields (RF-EMF) is rising and health effects are still under investigation. RF-EMF promote oxidative stress, a condition involved in cancer onset, in several acute and chronic diseases and in vascular homeostasis. Although some evidences are still controversial, the WHO IARC classified RF-EMF as "possible carcinogenic to humans", and more recent studies suggested reproductive, metabolic and neurologic effects of RF-EMF, which are also able to alter bacterial antibiotic resistance.


In this evolving scenario, although the biological effects of 5G communication systems are very scarcely investigated, an international action plan for the development of 5G networks has started, with a forthcoming increment in devices and density of small cells, and with the future use of millimeter waves (MMW).

Preliminary observations showed that MMW increase skin temperature, alter gene expression, promote cellular proliferation and synthesis of proteins linked with oxidative stress, inflammatory and metabolic processes, could generate ocular damages, affect neuro-muscular dynamics.

Further studies are needed to better and independently explore the health effects of RF-EMF in general and of MMW in particular. However, available findings seem sufficient to demonstrate the existence of biomedical effects, to invoke the precautionary principle, to define exposed subjects as potentially vulnerable and to revise existing limits. An adequate knowledge of pathophysiological mechanisms linking RF-EMF exposure to health risk should also be useful in the current clinical practice, in particular in consideration of evidences pointing to extrinsic factors as heavy contributors to cancer risk and to the progressive epidemiological growth of noncommunicable diseases.

https://www.ncbi.nlm.nih.gov/pubmed/29402696


--
Effects of Millimeter Waves Radiation on Cell Membrane - A Brief Review
Ramundo-Orlando A. Effects of millimeter waves radiation on cell membrane - A brief review. J Infrared Milli Terahz Waves. 2010; 30 (12): 1400-1411.
Abstract
The millimeter waves (MMW) region of the electromagnetic spectrum, extending from 30 to 300 GHz in terms of frequency (corresponding to wavelengths from 10 mm to 1 mm), is officially used in non-invasive complementary medicine in many Eastern European countries against a variety of diseases such gastro duodenal ulcers, cardiovascular disorders, traumatism and tumor. On the other hand, besides technological applications in traffic and military systems, in the near future MMW will also find applications in high resolution and high-speed wireless communication technology. This has led to restoring interest in research on MMW induced biological effects. In this review emphasis has been given to the MMW-induced effects on cell membranes that are considered the major target for the interaction between MMW and biological systems.
https://link.springer.com/article/10.1007%2Fs10762-010-9731-z
Excerpts
"Several studies on the effects induced by millimeter radiation on biological systems have been reported in the literature. Diverse effects have been observed on cell free systems, cultured cells, isolated organs of animals and humans. The subject has been extensively reviewed by Motzkin [17] and more recently by Pakhomov [3]. At the cellular level these effects are mainly on the membrane process and ion channels, molecular complexes, excitable and other structures. Many of these effects are quite unexpected from a radiation penetrating less than 1 mm into biological tissues [3, 18, 19]. However none of the findings described in the above reviews has been replicated in an independent laboratory, thus they cannot be considered as established biological effects."
"…a large number of cellular studies have indicated that MMW may alter structural and functional properties of membranes (Table 2)."
Conclusion
"In this review emphasis has been given to the low-level MMW effects on cell membranes. Above all, it should be mentioned that the reported effects are of a non-thermal character, that is, the action of radiation does not produce essential heating of the biological system or destroy its structure. In this context it appears that no permanent structural change of lipid bilayer could arise under low level (less than 10 mW/cm2) millimeter waves irradiation.
On the other hand, MMW radiation may affect intracellular calcium activities, and, as a consequence, several cellular and molecular processes controlled by Ca2+ dynamics themselves. The effects of MMW radiation on ion transport may be the consequence of a direct effect on membrane proteins as well as on phospholipid domain organization. Water molecules seem to play an important role in these biological effects of MMW radiation. Unfortunately, detailed cellular and molecular mechanisms mediating physiological responses to MMW exposure remain largely unknown.
Usually the search at a molecular level is simpler if we can reduce the complexity of our biological samples. This is the case for cell membranes by using model systems. They can be formed by a simple lipid bilayer without interfering components and they give independence from biological activity that can create complication in searching for electromagnetic fields bioeffects. The emphasis is on the search for molecular mechanisms of the membrane effect induced by MMW with different frequencies and power density. Furthermore, replication studies are needed including good temperature control and appropriate internal control samples. It is also advantageous if the future studies are multidisciplinary, invoking an integration of high quality exposure and effects methodologies.
Clearly a significant amount of accurate experimental work is still required in order to fully understand the interactions between MMW radiation and cell membrane."


Research Papers (updated 12/21/2023)
Evaluation of mitochondrial stress following ultraviolet radiation and 5G radiofrequency field exposure in human skin cells
Patrignoni L, Hurtier A, Orlacchio R, Joushomme A, Poulletier de Gannes F, Lévêque P, Arnaud-Cormos D, Revzani HR, Mahfouf W, Garenne A, Percherancier Y, Lagroye I. Evaluation of mitochondrial stress following ultraviolet radiation and 5G radiofrequency field exposure in human skin cells. Bioelectromagnetics. 2023 Dec 19. doi: 10.1002/bem.22495.

Highlights

  • A 24 h exposure to a 5G signal at 3.5 GHz was able to statistically significantly alter the mitochondrial reactive oxygen species (ROS) production in human skin fibroblasts (decrease at 1 W/Kg) and in human keratinocytes after UV-B irradiation (increase at 0.25 and 1 W/kg).

  • A 24 h exposure to a 5G signal at 3.5 GHz was not able to alter cell viability, apoptosis and mitochondrial membrane potential in human skin cells, either alone or after UV-B irradiation.

  • Further studies on 3D or in vivo skin models would be needed to conclude about a possible effect of 5G 3.5 GHz signal on ROS production.

Abstract
Whether human cells are impacted by environmental electromagnetic fields (EMF) is still a matter of debate. With the deployment of the fifth generation (5G) of mobile communication technologies, the carrier frequency is increasing and the human skin becomes the main biological target. Here, we evaluated the impact of 5G-modulated 3.5 GHz radiofrequency (RF) EMF on mitochondrial stress in human fibroblasts and keratinocytes that were exposed for 24 h at specific absorption rate of 0.25, 1, and 4 W/kg. We assessed cell viability, mitochondrial reactive oxygen species (ROS) production, and membrane polarization. Knowing that human skin is the main target of environmental ultraviolet (UV), using the same read-out, we investigated whether subsequent exposure to 5G signal could alter the capacity of UV-B to damage skin cells. We found a statistically significant reduction in mitochondrial ROS concentration in fibroblasts exposed to 5G signal at 1 W/kg. On the contrary, the RF exposure slightly but statistically significantly enhanced the effects of UV-B radiation specifically in keratinocytes at 0.25 and 1 W/kg. No effect was found on mitochondrial membrane potential or apoptosis in any cell types or exposure conditions suggesting that the type and amplitude of the observed effects are very punctual.

https://pubmed.ncbi.nlm.nih.gov/38115173/
Excerpts
To our knowledge, only a few published articles have examined the effects of 5G technology in experimental studies (EMF-Portal, 2022) at the specific band of 3.5 GHz. Among these, the exposure of zebrafish embryos at specific absorption rate (SAR) of 8.27 W/kg induced depressed sensorimotor function, abnormal behavioral responses, and variations in the expression of genes related to metabolic function in adult zebrafish (Dasgupta et al., 2020, 2022). In Drosophila melanogaster, 3.5 GHz exposure enhanced the expression of heat shock, oxidative stress, and humoral immunity system genes leading to fly developmental promotion (Wang et al., 2022). In addition, long-term exposure resulted in alterations of the expression of circadian clock genes resulting in improvement of sleep duration (Wang et al., 2021). Exposure of diabetic and healthy rats brains revealed an increase in appetite, energy metabolism, and oxidative stress (Bektas et al., 2022). Finally, no effect on anxiety-like behavior, but a SAR-dependent increase in different oxidative stress parameters were found in the guinea pig auditory cortex (Yang et al., 2022). Unfortunately, all these studies are highly heterogeneous in terms of endpoints, biological systems, and SAR levels, making it impossible to draw firm conclusions about the effects of 3.5 GHz signals on human health. It is also essential to indicate that all these studies used either an unmodulated or a GSM-modulated 3.5 GHz signal, but none of them used a 5G-modulated signal. In addition, none of the above-mentioned studies addressed the skin or other superficial tissues as relevant targets. Actually, since the penetration of the RF-EMF into the tissues decreases as the frequency increases, and given the large amount of water in the skin (Christ et al., 2006; Feldman et al., 2009), this tissue is susceptible to absorb most of the RF-EMF power when exposed to the 5G highest frequency ranges, that is, at 3.5 GHz and even more at 26 GHz.​...
Exposure of cells to 5G-modulated signals at 3.5 GHz was performed using an innovative reverberation chamber (RC) (Orlacchio et al., 2023), that is, an electrically large cavity made of metallic walls where a homogeneous field distribution was achieved through random mechanical stirring of the field components (Hill, 1998). This is particularly convenient in bioelectromagnetic experiments to ensure a highly homogeneous exposure level regardless of the samples location within the exposure system (Capstick et al., 2017; Ito & Bassett, 1983). In this study, a cell culture incubator (150 L; BINDER Gmbh), was converted into an RC to guarantee 24 h in vitro exposure under controlled biological conditions (37°C, 5% CO2, and 95% humidity). A detailed description of the system schematically represented in Figure 1a was given in (Orlacchio et al., 2023). The main components are reported hereafter. A printed patch antenna was used to deliver 5G-modulated 3.5 GHz signal in the chamber. A metallic stirrer composed of eight rectangular blades (8 × 10 × 1 cm3) was mounted on a 30 cm mast to continuously rotate through a motorized precision rotation stage (PRM1/MZ8; Thorlabs Inc.) driven via a K-Cube dc servo controller (KDC101; Thorlabs). The continuous rotation modified the boundary conditions during exposure allowing to achieve a homogeneous and isotropic averaged EMF within the samples (Serra et al., 2017)....
We report here some effects of 5G-modulated RF-EMF at 3.5 GHz on human skin cells, either alone in human fibroblasts, or after exposure to UV-B radiations in human keratinocytes. The effects were found nonlinear in relation to the SAR level and their amplitude did not exceed 30% compared to sham (fibroblasts) or to UV-B radiation (keratinocytes). Interestingly, we found no correlation with any change in the UV-B-induced mitochondrial membrane potential or apoptosis, suggesting that the RF-EMF increase in UV-B-induced ROS production was not enough to additionally impact neither mitochondrial membrane potential, apoptosis nor necrosis. To further determine whether these effects could lead to any protective effect or increase UV-B harmful bioeffects, it would be interesting to evaluate the activation of the cell's antioxidant response, that is, superoxide dismutase, glutathione, or glutathione peroxidase expression level or activity. It will also be of importance to assess whether the presence of ROS can induce end-products, such as 4-hydroxy-2-nonenal that is produced by lipid peroxidation in cells, either in skin's organoids (Sun et al., 2021) or in skin in vivo, as we previously assessed in the sera of rats exposed to a CW 2.45 GHz signal (7 h/day for 30 days, 0.16 W/kg whole-body SAR) (De Gannes et al., 2009). These approaches would indeed be more representative of the skin complexity and take into account the interaction among the different skin cells.

--
RF exposure from ten 5G beamforming cell towers (3.6 GHz band) in Germany
Kopacz T, Bornkessel C, Wuschek M. Consideration of current mobile phone antenna technology when determining HF-EMF exposure - project 3619S82463. Federal Office for Radiation Protection (BfS). Nov-2022. Report number(s): BfS-RESFOR-208/22. URN(s): urn:nbn:de:0221-2022112435660.
The report is in German with an English-language executive summary (see below).

Abstract (Google translation)

This research project deals with the metrological recording and analysis of immissions from 5G base stations with beamforming antennas in the 3.6 GHz band. As a basis, measurement methods for determining current, typical and maximum possible immissions were proposed, which suitably take into account the time-varying radiation behavior of the antennas. The maximum possible immissions can be determined either by extrapolation based on the difference in antenna gain between traffic and broadcast beams at the measuring point or by direct measurement when the maximum immission is provoked using a 5G terminal device. Immission measurements at 100 systematically selected measuring points in the vicinity of ten 5G beamforming base stations in the 3.6 GHz band resulted in maximum immissions between 0.2% (0.15 V/m) and 28.9% (17.6 V/m m) the field strength limit of the 26th BImSchV (median 4.7% or 2.9 V/m). The instantaneous immissions without provoked traffic were between 0.04% (0.03 V/m) and 1.1% (0.67 V/m) of the field strength limit value (median 0.08% or 0.05 V/m) and the emissions during typical use (ARD live stream) are only slightly higher, between 0.04% (0.03 V/m) and 1.3% (0.8 V/m) of the field strength limit value (median 0.2% or 0.12V/m). The visibility conditions between the place of immission and the 5G antenna have a major influence on the size of the immission, since significant attenuation also occurs in the 3.6 GHz band due to vegetation. The dependence on the vertical angle between the point of immission and the antenna observed in GSM, UMTS and LTE base stations has changed in the 5G beamforming base stations examined in such a way that the immissions are no longer highest at small but at larger vertical angles. len. If the beam does not act at the point of immission, but is shifted azimuthally or radially by a few tens of meters in the cell, the measurements carried out here showed an average immission reduction of 7.5 dB compared to a direct alignment of the beam to the point of immission. Long-term measurements showed that users were only active sporadically at the time of the measurements. Even with targeted provoked typical use, the 6-minute mean value of the field strength at most points could only be significantly raised above the detection limit of the measuring device by downloading a large file. Immission peaks were usually very limited in time.
Open access paper: https://doris.bfs.de/jspui/handle/urn:nbn:de:0221-2022112435660
Summary

The aim of this research project is the measurement-based assessment and analysis of RF-EMF exposure caused by beamforming base station antennas (massive MIMO antennas) used for 5G in the 3.6 GHz band. Suitable measurement methods for determining instantaneous, typical and maximum possible exposure levels are proposed as a basis.
The extrapolation to maximum possible exposure to 5G is based on the measurement of the field strength of the SS/PBCH block (SSB), which is part of the signaling and is radiated periodically. The measurement can be carried out in frequency-selective or code-selective domain. In the case of frequency-selective measurement, care must be taken to ensure that the correct RMS value is recorded. In case a laboratory spectrum analyzer is used, this is done by applying an RMS detector in combination with an observation time, which is adapted to the 5G symbol duration for each recording point. In the case of the Narda SRM-3006 field strength meter, averaging is performed by a video filter with a suitable bandwidth. For code-selective measurements, the Secondary Synchronization Signal (SSS) is decoded as part of the SSB and its field strength is determined. The code-selective measurement is preferable to the frequency-selective measurement because it is the only way to measure the cell-specific SSB field strength and not only the sum field strengths of all present 5G cells. Code-selective measurement values are also independent of the traffic superimposing the SSB in time.

The usage of beamforming in the 3.6 GHz band, i.e. the time-varying radiation pattern of the base station antenna, poses a great challenge to the exposure assessment with regard to determining the maximum exposure: In the case of multiple SSBs, these are sequentially radiated into different areas of the cell by the broadcast beams. However, the physical downlink shared channel (PDSCH), which is causing maximum exposure at the measurement point, is radiated via the traffic beams. The radiation characteristics of the traffic and broadcast beams can differ significantly. These differences must be considered by the extrapolation procedure individually for each measurement point depending on its location in the cell. However, this requires that the used antenna patterns of traffic and broadcast beams and the current settings are provided for the corresponding frequency bands by the network operators. Investigations in this research project have shown that this extrapolation procedure works reliably for measurement points having line-of-sight to the base station antenna.

An alternative to the extrapolation to maximum possible exposure is the immediate measurement while maximum exposure is provoked using a 5G user equipment, which is located in the vicinity of the measurement point and is allocated as many resources of the base station as possible by means of an FTP download. In this way, radiation with maximum possible EIRP towards the measurement point is forced. Given the complexity of required data for the extrapolation procedure, this method is a recommendable alternative as the current network utilization in the 3.6 GHz band is very low. However, due to the higher market penetration of 5G terminals expected in the medium term, it is questionable whether it can still be applied reliably in the future.
In the course of the measurements, exposure levels were determined at each ten systematically selected measurement points in the vicinity of ten 5G base stations with massive MIMO antennas in the 3.6 GHz band. On the one hand, the "instantaneous exposure" experienced at the measurement time without provoked utilization of the radio cell and on the other hand the "typical exposure" (i.e. the exposure occurring during a typical use case (TV live streaming)) as well as the "maximum exposure" during provoked utilization of the radio cell were determined. Maximum exposure was investigated by immediate measurement while a 5G user equipment was provoking maximum exposure in the vicinity of the measurement point. In addition to typical exposure levels in case a traffic beam was aligned with the measurement point, for more than half of the measurement points, the typical exposure was determined in case the traffic beam was displaced either horizontally of radially into another area of the cell. Furthermore, the instantaneous and maximum exposure levels to GSM, LTE and LTE/5G-DSS (Dynamic Spectrum Sharing, passive antennas) were determined at each two measurement points in the vicinity of five base stations.

The highest maximum exposure level determined (no. of measurement points n = 96) amounts to 28.9 % (17.7 V/m) of the German safety limits given by the 26th Ordinance Implementing the Federal Immission Control Act (26. BImSchV), which are equal to the reference levels given in ICNIRP 1998 and 2020. The lowest maximum exposure level is 0.2 % (0.15 V/m). Thus, there is a very large range of more than 40 dB. For measurement points with line-of-sight (LOS) to the 5G antenna (n = 56), the range is significantly lower at 27 dB. The mean maximum exposure level over all measurement points is 9.3 % of the reference levels (5.7 V/m, averaged over power) and the median is 4.7 % (2.9 V/m). Compared to the results of the previous studies on LTE and UMTS, the frequency distribution of the maximum exposure levels experiences a broadening towards higher values. However, it should be noted, that in this project only systematically selected measurement points were chosen which tended to have LOS to the antenna and thus above-average exposure levels, whereas the measurement points in the previous studies were also selected randomly.

The highest typical exposure level caused by TV streaming (n = 97) is 1.3 % of the reference levels (0.8 V/m) and the lowest 0.04 % (0.03 V/m, detection threshold of the measuring device), which means that the real typical exposure levels could be even lower at some points. The range is nearly 30 dB both for measurement points with line-of-sight (LOS, n = 57) and without line-of-sight (NLOS, n = 40) to the 5G antenna. Evaluated over all measurement points, the range is only slightly higher at a little more than 30 dB. The mean typical exposure level over all measurement points is 0.4 % of the reference levels (0.27 V/m, averaged over power) and the median is 0.2 % (0.12 V/m).

For the instantaneous exposure levels without provoked utilization of the radio cell (n = 100), the maximum is 1.1 % of the reference levels (0.67 V/m) and the minimum is 0.04 % (0.03 V/m, detection threshold of the measurement device). According to typical exposure levels, the real instantaneous exposure could also be even lower at some points. Over all measurement points, the found range of 29 dB is similar to that of the typical exposure levels. At measurement points without line-of-sight to the antenna (NLOS, n = 40), the range of 22 dB is lower compared to measurement points with line-of-sight to the antenna (LOS, n = 60, 27 dB), which is presumably due to the fact that in NLOS cases, measured values in the order of the magnitude of the detection limit frequently occurred. This can be also observed in the frequency distribution of the measured instantaneous exposure levels, where very low values strongly dominate.
Due to the currently very low network load in the 3.6 GHz band, the measured instantaneous exposure levels are for the most part very close to the theoretically estimated minimum exposure (0.01 % to 0.4 % of the reference levels), which is present when the base station is in idle mode. However, this also demonstrates that an idle 5G base station generates only very low exposure levels. Even typical use cases of a user equipment in the vicinity of the measurement point evoke exposure levels, which are still well below the maximum value. A comparison of the median values of maximum and instantaneous exposure levels shows a difference of 34.5 dB (i.e., a factor of 3,450 with respect to the power). The individual difference factors at the single measurement points ranged between about 7 dB and 48 dB. Only at six of the 96 measurement points, the difference factor was less than 20 dB.
At ten measurement points in the vicinity of five 5G base stations, the instantaneous as well as the maximum exposure values to all mobile radio services (GSM, LTE, LTE/5G-DSS and 5G in the 3.6 GHz band) and frequency bands operated at the base stations were determined. TETRA-BOS was not installed at any of the sites. Furthermore, UMTS was no longer in operation at any of the sites. At all measurement points, the exposure to other mobile radio services (GSM, LTE and LTE/5G-DSS) dominates over the instantaneous as well as the typical 5G exposure. At nine out of ten measurement points, the instantaneous exposure to at least one frequency band of GSM, LTE or LTE/5G-DSS is also higher than the instantaneous as well as the typical exposure to 5G (this applies to both the field strength as well as the percent-age of the reference levels). Only at one measurement point, the highest field strength occurs with typical 5G usage. However, due to the lower reference level, the highest percentage of the reference levels is caused by LTE signals in the 800 MHz band. For the maximum exposure, there is no consistent result: at six out of ten measurement points (each both measurement points around three of five 5G sites), the sum of the maximum exposures to other mobile radio services dominates. At the remaining four measurement points (each both measurement points around two of five 5G sites), the maximum exposure is dominated by 5G. However, the difference factors exhibit a wide range with values between -19 dB (i.e., 5G exposure dominates) and 7 dB (i.e., exposure to other mobile radio services dominates). The maximum exposure levels to 5G at these ten measurement points were in the range of 0.7 % (0.4 V/m) to 25.5 % (15.5 V/m).

The statistical evaluation of the levels of the three different 5G exposure types ("instantaneous", "typical", "maximum") taking into account the location of the outdoor measurement points in relation to the 5G antenna shows that it is obviously not justified to use the distance between the measurement point and the base station antenna as the sole decisive criterion for the assessment of the exposure level. One reason for this is that in this range of distances, the exposure level is strongly influenced by the side lobes and nulls of the vertical antenna pattern. Due to the ability of beamforming antennas to change their direction of the main lobe in the vertical domain, the distance range, in which measurement points are located only in the region of the side lobes will be reduced, but no prediction can be done on this without knowing the actual settings of the base station (vertical scanning range). For a certain distance between measurement point and the base station antenna, the range of the measured exposure levels amounts up to 30 dB. A significant influence on the exposure levels is observed in the line-of-sight conditions between the measurement point and the 5G antenna. At the relatively high frequencies around 3.6 GHz, buildings and even vegetation have a strong attenuation on the propagating waves. However, it should be mentioned that for some non-line-of-sight measurement points, which were covered by a reflected or an edge-diffracted beam, the resulting exposure levels were comparable to exposure levels at measurement points with line-of-sight to the antenna at similar distances. The impact of the vertical angle between base station antenna and the measurement point on the resulting exposure to 5G massive MIMO antennas has changed compared to the results of similar measurements on mobile radio services with passive antennas. Obviously, it can no longer be assumed that the exposure levels at smaller vertical angles (< 10°) are in general higher than those at large vertical angles. For the investigated base stations, on average, the highest maximum exposure levels occurred even in the vertical angle range between 15° and 20°. The orientation of the beam has a significant influence on the resulting exposure. In addition to the typical exposure, while a user equipment was provoking cell load in the vicinity of the measurement point, further measurements of the typical exposure were carried out under the constraint that the active user equipment was no longer close to the measurement point, but at a greater distance of several tens of meters from it, which resulted in an azimuthal or radial displacement of the radiated traffic beam with respect to the location of the measurement point. The displacement of the beam resulted in a median reduction of the exposure levels of around 7.5 dB. The results show that, in areas of the radio cell that are not in the main lobe of the radiated beam, the exposure is on average lower. However, due to reflections and transmission via side lobes, the exposure is still measurable despite the alignment to a different location in the cell.
Long-term measurements at in total five differently located measurement points over each 24 hours around an urban and a rural 5G site in the 3.6 GHz band showed that users were active only very sporadically, which can be observed by very few peaks of the instantaneous exposure. However, the subsequently calculated 6-minute moving average of the exposure is barely affected by the exposure peaks occurring only for a short time. Most of the time, the measured instantaneous exposure at most of the measurement points was low enough to not exceed the detection threshold of the measurement device. When a typical data traffic case in the cell was provoked by a user equipment in the vicinity of the measurement point, the six-minute average exposure could only be significantly increased when downloading a large file of 1 GB. Other use cases such as surfing or video streaming generated only sporadic field strength peaks, but occurred so rarely that they did not significantly affect the six-minute aver-age exposure. The magnitude of the field strength peaks was strongly depending on the location of the measurement point. At an indoor measurement point on the upper floor immediately opposite from the base station antenna, the exposure amounted up to 9.0 % of the reference levels (5.5 V/m). At measurement points in larger distances or at higher vertical angles to the base station antenna, the exposure was clearly lower with values up to around 0.2 % of the reference levels (0.1 V/m).
Open access paper: https://doris.bfs.de/jspui/handle/urn:nbn:de:0221-2022112435660

--
Sven Kuehn, Serge Pfeifer, Beyhan Kochali, Niels Kuster. Modelling of Total Exposure in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios. Final Report of Project CRR-816. A report on behalf of the Swiss Federal Office for the Environment (FOEN). IT'IS Foundation, Zurich. 24 June 2019.
Executive Summary

In January 2019, the Swiss Federal Office for the Environment (FOEN) mandated the IT'IS Foundation to evaluate the total human exposure in hypothetical 5G mobile networks for varied topologies and user scenarios to identify factors that would minimize the total exposure of the population. In this study, total exposure is defined as the combined exposure from network base stations, the user's own device, as well as bystanders' mobile devices.

The influence of various factors on total exposure in mobile communication networks (as defined above) was modeled and analyzed with the help of the Monte Carlo simulation technique. Total exposure is described as the local peak specific absorption rate (SAR) spatially averaged over any 10 g of tissue mass (psaSAR10g) averaged over a period of 6 minutes. The unit psaSAR10g was chosen because it defines the governing basic restriction for wireless exposure as the whole-body average SAR limits (wbaSAR) are intrinsically met if the limits of local exposure are satisfied. The averaging duration of 6 minutes constitutes the internationally accepted averaging time to prevent thermal hazards at frequencies below 6 GHz as instant values have little justification. However, it should be noted that some regulators define shorter averaging time periods, e.g., the US Federal Communications Commission (FCC) of 100 s.

In a first step, we analyzed the tissue-specific exposure as a function of frequency. The preliminary dosimetric study showed that exposure of the human brain to the 3.6 GHz band, that has been recently added to the Swiss mobile communication frequencies, is reduced by a factor of >6 for the tissue averaged SAR when compared to mobile network operation at <1 GHz. This reduction is due to the smaller penetration depth at higher frequencies. This conclusion, however, does not apply to exposed tissues close to the surface or skin (eyes, testicles, etc.) when the peak SAR in this tissue is evaluated. The peak SAR in the grey matter remains in approximately the same order of magnitude ( 3 dB) over all frequencies but the area of high exposure is reduced at 3.6 GHz.

In a second step, we used data measured in 4G systems and analyzed the latest mobile network standards to extrapolate the exposures for various 5G network scenarios. These measured data were also used to extrapolate the exposure to the future development of data usage in 5G networks.

Specifically, we analyzed the effect on the total exposure of (i) the network topology by varying the cell size and amount of indoor coverage in the network, as well as the usage of (ii) an individual's own device, and (iii) devices of close bystanders.

The results – based on simulations of more than 200 different exposure scenarios – reveal that, for all user types, except for non-users (including passive mobile phone users and users dominantly using downlink data traffic, e.g., video streaming), total exposure is dominated by the person's own mobile device. Compared to non-users, the exposure is increased (i) for light users (with 100 MByte uplink data per day) by 6 – 10 dB (or a factor of 4 to 10), (ii) for moderate users (with 1 GByte uplink data per day) by 13 – 25 dB (or a factor of 20 to >300), and (iii) for heavy users by 15 – 40 dB (or a factor of 30 to >10000). Further, the results show that peak exposure of non-users is not defined by exposure to base stations but by exposure to mobile devices of close bystanders in urban areas resulting in 6 dB (or a factor of 4) higher exposure than from a nearby base station antenna.

While a reduction of the mobile cell size leads to a reduction in total exposure by a factor of 2 to 10 for people actively using their mobile devices, this might also lead to a small increase by a factor of 1.6 in total exposure of non-users due the generally increased incident signal levels from the surrounding base stations.

Similarly, the exposure of active users can be reduced by a factor of 4 to 600 by increasing the indoor network coverage. Yet, in line with the results for the mobile cell sizes, increased indoor coverage will also lead to increased exposure of non-users by a factor of 2 to 10. This increase, however, starts at a level 1000 times lower than the typical total exposure of active users.

The results of this study show that the personal mobile device is the dominant exposure source for active mobile network users. Besides a person's own usage behavior, total exposure is also closely linked to the network infrastructure. Generally speaking, a network with a lower path loss, i.e., smaller cells and additional indoor coverage, helps to reduce total exposure. The exposure per transmitted bit is reduced by a factor of <3 by the increased spectral efficiency of the 5G technology, and the reduced penetration depth associated with the new bands at 3.5 – 3.8 GHz.

The results presented above are limited due to the network data that has been used and the definition of total exposure as stated in this report. Furthermore, it only considers time-averaged (6 min) and not instant exposures. This study does not consider (i) the effect of upcoming massive MIMO systems in 5G networks, (ii) alternative data transmission links, for instance the use of Wireless Local Area Network (WLAN), and (iii) millimeter wave frequencies in 5G mobile networks.
Conclusions
The results of this study show that the absorption of energy by the human brain, resulting from exposure to the 3.6 GHz band newly added to the Swiss mobile communication frequencies, is reduced by a factor >6 for the tissue averaged SAR when compared to mobile networks operating at <1 GHz, and by a factor of >2 when compared to the frequency bands at 1.8 – 2GHz. For deep brain regions, the reduction is much larger.
The reduced exposure for these regions is due to lower penetration depths at higher frequencies. Close to the surface (eyes, testicles, etc.) the exposure can be higher. At the most exposed surface of the grey matter, the values remain approximately 3 dB over all frequencies whereas the area of high exposure is reduced.
More than 200 Monte Carlo simulated exposure scenarios have been analyzed to evaluate total human exposure in 5G Networks for different topologies and user scenarios. The results show that for all users (except non-users), the total exposure is dominated by a person's own mobile device. Compared to a non-user, the exposure is increased for a light user (with 100 MByte uplink data per day) by 6 – 10 dB (or by a factor 4 to 10), for a moderate user (with 1 GByte uplink data per day) by 13 – 25 dB (or by a factor of 20 to >300), and for a heavy user by 25 – 40 dB (or a factor of 300 to >10000). The peak exposure of non-users is further not defined by exposure to surrounding base stations but by mobile devices of close bystanders in urban areas, resulting in 6 dB (or a factor of 4) higher exposure than from a nearby base station antenna.

Reducing the diameter of the mobile cell leads to a decreased overall exposure by a factor of 2 to 10 for people who actively use their mobile devices. At the same time, the reduction in cell size might lead to a small increase by a factor <2 in exposure for non-users. The exposure of active users can be reduced by factors ranging from 4 to 600 by increasing indoor network coverage which, in turn, will be linked to increased exposure of non-users by a factor of 2 to 10. However, such an increase is by a factor 1000 lower than the typical exposure of active users. The results of this study are limited due to the network data that has been used and the definition of total exposure as stated earlier in this report. This study does not consider (i) the effect of upcoming massive MIMO and multi-user MIMO systems in 5G networks, (ii) alternative data transmission links – for instance the use of Wireless Local Area Network (WLAN) and (iii)millimeter wave frequencies in 5G mobile networks.

In summary, the results of this study show that the user's own mobile device is the dominant source of exposure for the population of active mobile network users. Besides personal usage patterns, totl exposure is also closely linked to the network infrastructure. Generally speaking, a network that decreases the path loss by means of smaller cells and additional indoor coverage will help to reduce the total exposure of the population.

https://www.bafu.admin.ch/dam/bafu/en/dokumente/elektrosmog/externe-studien-berichte/modelling-of-total-exposure-in-hypothetical-5g-mobile-networks-for-varied-topologies-and-user-scenarios.pdf.download.pdf/Modelling%20of%20Total%20Exposure%20in%20Hypothetical%205G%20Networks%20-%20Schlussbericht.pdf
--
El-Hajj AM, Naous T. Radiation Analysis in a Gradual 5G Network Deployment Strategy. 2020 IEEE 3rd 5G World Forum (5GWF), Bangalore, India IEEE, 2020: 448-453, ISBN 9781728173009. (Austin, TX simulation)

Abstract

In a world where many overlapping 2G, 3G, and 4G electromagnetic radiation sources already exist, concerns regarding the potential increase in these radiation levels following the roll-out of 5G networks are growing. The deployment of 5G is expected to increase power density levels drastically, given the limitations of mmWave communications that impose a notably higher number of base stations to cover a given area of interest. In this paper, we propose a gradual deployment strategy of a 5G network for a small area in downtown Austin, Texas, using the already existing 4G LTE sites of the area. The radiated power density of the proposed 5G network is then analyzed according to several electromagnetic field (EMF) exposure limits and compared to the radiation levels of the same area where only the LTE network is present. Simulation results for the selected area demonstrate the significant increase in radiation levels resulting from the addition of 5G cell towers.
https://ieeexplore.ieee.org/document/9221314
For the frequency range of 2 to 300 GHz, the IEEE C95.1-2019 standard [18] specifies a limit power density value of 10 W/m2 in restricted environment and 50 W/m2 in unrestricted environments. These correspond to an averaging time of 30 minutes. The International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2020 guidelines for limiting exposure to electromagnetic fields [19] specify the general public exposure limit at 10 W/m2 for frequencies between 2 and 300 GHz with the averaging time being 30 minutes. Similar limits are specified by the Federal Communications Commission (FCC) in [20] where a restriction of 10 W/m2 for the general public has been set. In contrast, the institute for building biology and sustainability (IBN) in Germany have specified the exposure limit to be less than 0.1 W/m2 in their 2015 Standard of Building Biology Measurement Technique (SBM-2015) [21], which is a million-fold lower than what is specified by the aforementioned guidelines. This suggests that negative health effects can occur at levels much lower than 10
W/m2. Finally, the Chinese ministry of health [22] have set the power density exposure limit to 0.1 W/m2.This paper presented an analysis of the radiation levels in a deployed 5G network in an urban outdoor environment. Under the constraints of exposure limits, several challenges face the design and planning of such radiation aware 5G networks. Cell ranges need to be reduced to comply with the maximum allowed radiated power, requiring the densification of small cells in small areas and making it more costly to deploy these radiation-aware 5G networks. Although in this work we considered the maximum allowed EIRP prior to network deployment, results showed power density levels that do not satisfy all the exposure limits set by several sources. In this regard, a positive impact can be imposed by radiation-aware 5G networks on several levels. On a governmental level, the exposure limits for the power density need to be revised using today's data and approaches to bridge the gap between the thresholds specified by the different institutes and commissions. On a technological and scientific level, the radiation exposure constraint can open the door for innovative 5G solutions targeted to limit the health risks and economic barriers associated with this problem. This work can be extended by developing an analytical framework to efficiently rank and rate different cell allocation alternatives to minimize the potential radiations given a carefully chosen list of key performance indicators.

--
Absorption of 5G radiation in brain tissue as a function of frequency, power and time
David H. Gultekin, Peter H. Siegel. Absorption of 5G radiation in brain tissue as a function of frequency, power and time. IEEE Access. Published online June 12, 2020. DOI: 10.1109/ACCESS.2020.3002183.
Abstract
The rapid release of 5G wireless communications networks has spurred renewed concerns regarding the interactions of higher radiofrequency (RF) radiation with living species. We examine RF exposure and absorption in ex vivo bovine brain tissue and a brain simulating gel at three frequencies: 1.9 GHz, 4 GHz and 39 GHz that are relevant to current (4G), and upcoming (5G) spectra. We introduce a highly sensitive thermal method for the assessment of radiation exposure, and derive experimentally, accurate relations between the temperature rise (ΔT), specific absorption rate (SAR) and the incident power density (F), and tabulate the coefficients, ΔT/ΔF and Δ(SAR)/ΔF, as a function of frequency, depth and time. This new method provides both ΔT and SAR applicable to the frequency range below and above 6 GHz as shown at 1.9, 4 and 39 GHz, and demonstrates the most sensitive experimental assessment of brain tissue exposure to millimeter-wave radiation to date, with a detection limit of 1 mW. We examine the beam penetration, absorption and thermal diffusion at representative 4G and 5G frequencies and show that the RF heating increases rapidly with frequency due to decreasing RF source wavelength and increasing power density with the same incident power and exposure time. We also show the temperature effects of continuous wave, rapid pulse sequences and single pulses with varying pulse duration, and we employ electromagnetic modeling to map the field distributions in the tissue. Finally, using this new methodology, we measure the thermal diffusivity of ex vivo bovine brain tissue experimentally.
Summary
In this paper, we present for the first time, a simple, highly accurate test system for measuring the temperature rise and the specific absorption rate in tissue samples and liquid or gel simulants as a function of frequency, RF exposure power and time – pulsed and CW. We use this set up to make, and compare, carefully calibrated measurements of bovine brain tissue and a gel simulant, Triton X and water, at both 4G (1.9 GHz) and newly allocated 5G frequency bands (4 GHz - 39 GHz). We show the effects of beam concentration, focusing, absorption and heat diffusion at all three frequencies and delineate a linear range over which we can derive highly accurate coefficients (ΔT/ΔF and Δ(SAR)/ΔF) that can be used to predict the temperature rise and the specific absorption rate at prescribed depths and exposure times within the tissue or gel at power levels that go down to detectable limits (<1 mW). This method may be used to evaluate a wide range of RF radiation sources, tissues and simulants.
We also note that the impact of relatively modest incident RF power (1 W) and short exposure times (6 minutes CW and 30 second pulsed) at 39 GHz using a single mode waveguide source for the exposure, results in extremely large power density (16.5 kW/m2) and temperature rise (> 60°C for CW, > 35°C for 30 s pulse) in both bovine brain tissue and gel. This same temperature rise can be expected on skin (which has very similar dielectric properties) when such large surface power densities are present in very close proximity to the RF source or antenna, perhaps emanating from millimeter-wave base stations, handsets, or wireless-enabled appliances or kiosks. Although, current safety limits of 28.76 and 143.8 W/m2 for power density in unrestricted (public) and restricted (occupational) environments, respectively should prevent such exposures, the resulting limits on RF power generation of only 1.7 to 8.5 mW from a directional RF source, such as our waveguide at 39 GHz, in the vicinity, will greatly limit the application potential for any such communications system.
In the USA, the FCC and FDA are overseeing the implementation of millimeter wave technology in the public realm and more studies are needed to help guide the science, technology and policy. Our experimental method can provide threshold temperature and SAR values for both occupational and public exposures to millimeter waves with surface power densities from 16.5 W/m2 to 16.5 kW/m2 and exposure times from 1 second to 30 minutes.
Finally, we use our new data and this RF method to derive a thermal diffusivity coefficient for the ex vivo bovine brain tissue that is consistent with our prior measurements using an MRI. This is the first time that the thermal diffusivity of ex vivo bovine brain tissue has been directly measured by this thermal RF method [47, 50, 51, 70].
Open access paper: https://ieeexplore.ieee.org/document/9115853
--

A Theoretical and Experimental Investigation on the Measurement of the Electromagnetic Field Level Radiated by 5G Base Stations

Adda S, Aureli T, D'elia S, Franci D, Grillo E, Migliore MD, Pavoncello S, Schettino F, Suman R. A Theoretical and Experimental Investigation on the Measurement of the Electromagnetic Field Level Radiated by 5G Base Stations. IEEE Access 2020. doi:10.1109/ACCESS.2020.2998448.
Abstract
This paper presents some theoretical considerations and experimental results regarding the problem of maximum power extrapolation for the assessment of the exposure to electromagnetic fields radiated by 5G base stations. In particular the results of an extensive experimental campaign using an extrapolation procedure recently proposed for 5G signal is discussed and experimentally checked on a SU-MIMO signal. The results confirm the effectiveness of the extrapolation technique. Starting from an analysis (that represents a further novel contribution of this paper) on the impact of Spatial Division Multiple Access techniques used in 5G on the measurement of EMF level, some indications of possible extension of the technique to the highly complex MU-MIMO case are also given.
https://ieeexplore.ieee.org/document/9103530
--
Adverse Impacts of 5G Downlinks on Human Body
Nasim I, Kim S. Adverse Impacts of 5G Downlinks on Human Body. 2019 SoutheastCon. Huntsville, AL. 11-14 April 2019. DOI: 10.1109/SoutheastCon42311.2019.9020454
Abstract

The increasing demand for higher data rates and uninterrupted reliable service have made the frequency spectrum above 6 GHz a very promising candidate for future wireless communications because of its massive amount of raw bandwidth and extremely high data transfer capabilities. However, increasing concerns of communications at high frequencies on human health have gained international alarm that suggests more research before it is deployed successfully. In this context, this paper aims to investigate the human electromagnetic field (EMF) exposure from fifth-generation (5G) downlink communications and compare its impacts with the present cellular technologies considering the features that the 5G systems will likely adopt. Our simulation results suggest that while the impacts from 5G beamforming communications cross the regulatory borders at downlinks for a very short range between base stations (BSs) and user equipment (UE), the exposure level remains on a high throughout the entire network compared to the present systems. Also, this paper urges for more research on the exposure level from future communications to determine any possible threats below the existing guidelines. This paper also highlights the significance of considering SAR for the measurement of exposure compliance in downlinks.
Excerpt
... this paper urges the regulatory authorities to set SAR guidelines for 5G systems at far-field exposure also for frequencies above 6 GHz. Also, the minimum AP-UE [access point - user equipment] distance should be maintained at least 6 m [meters] for 5G and further space should be left for a conservative operation regarding human safety.
Conclusions
This paper has highlighted the significance of the human EMF exposure issue in the downlink of a cellular communications system. This paper measured the exposure level in terms of PD and SAR and compared them to those calculated in the 3.9G and 4G specifications. Distinguished from the prior art that studied uplinks only, this paper has found that the downlinks of a 5G can also yield a higher level of emissions in terms of SAR compared to concurrent cellular systems. Our results emphasized that this increase stems from more highly concentrated EMF energy per downlink RF beam due to the use of larger phased arrays within small cells of a 5G network. However, only skin effects are being taken into consideration for simplicity. This paper has also suggested the minimum AP-UE distance for human safety in cellular communications at high frequencies such as 28 GHz. To this end, this paper urges to investigate any possible threats at the exposure level shown in this work for future 5G systems before it is finally globalized.
https://ieeexplore.ieee.org/document/9020454
--
A Survey on Electromagnetic Risk Assessment and Evaluation Mechanism for Future Wireless Communication Systems
Jamshed MA, Heliot F, Brown T. A Survey on Electromagnetic Risk Assessment and Evaluation Mechanism for Future Wireless Communication Systems. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology. May 20, 2019. DOI: 10.1109/JERM.2019.2917766

Abstract

The accurate measurement of electromagnetic exposure and its application is expected to become more and more important in future wireless communication systems, given the explosion in both the number of wireless devices and equipment radiating electromagnetic-fields (EMF) and the growing concerns in the general public linked to it. Indeed, the next generation of wireless systems aims at providing a higher data rate, better quality of service (QoS), and lower latency to users by increasing the number of access points, i.e. densification, which in turn will increase EMF exposure. Similarly, the multiplication of future connected devices, e.g. internet of things (IoT) devices, will also contribute to an increase in EMF exposure. This paper provides a detailed survey relating to the potential health hazards linked with EMF exposure and the different metrics that are currently used for evaluating, limiting and mitigating the effects of this type of exposure on the general public. This paper also reviews the possible impacts of new wireless technologies on EMF exposure and proposes some novel research directions for updating the EMF exposure evaluation framework and addressing these impacts in future wireless communication systems. For instance, the impact of mmWave or massive-MIMO/beamforming on EMF exposure has yet to be fully understood and included in the exposure evaluation framework.

Conclusions

A thorough survey on exposure risk assessment, evaluation, limitation and mitigation for current and future wireless devices and equipment have been provided in this paper. From the human health point of view, it seems that the possibility of brain tumor is still the main cause of concerns related to the extensive use of wireless devices, even though the effects of EMF exposure is now being investigated in new parts of the body (e.g. eyes). Meanwhile, with the advent of 5G, more efforts are now been made to understand the thermal and non-thermal effects of mmWave exposure on the human body. When it comes to the evaluation of EMF exposure, we have presented the most common evaluation frameworks and metrics that are utilized in wireless communications to measure the exposure. We have also explained how new more generic metrics have been defined by combining existing metrics to better reflect the exposure of large geographical areas and have argued that a generic metric for measuring the individual exposure would also be of interest. We have also reviewed the existing exposure guidelines and have explained how they can be updated for better reflecting the true nature of EMF exposure, i.e. by better taking into account the duration of exposure. Finally, we have provided some views on how key 5G enabling technologies such as densification, massive MIMO and mmWave will impact the EMF exposure in the near future; for instance, the dense deployment of small cells and IoT devices is very likely to increase the overall ambient exposure. We also believe that there could be some technical opportunities in 5G to increase the exposure awareness of wireless system users and to let them decide if they want to reduce it at the cost of, for instance, a lower QoS.

https://ieeexplore.ieee.org/document/8718293
--
Assessment of Maximally Allowable Power-Density Averaging Area for EMF Exposure above 6 GHz
Neufeld E, Carrasco E, Murbach M, Balzano Q, Christ A, Kuster N. Theoretical and numerical assessment of maximally allowable power-density averaging area for conservative electromagnetic exposure assessment above 6 GHz. Bioelectromagnetics. 2018 Dec;39(8):617-630. doi: 10.1002/bem.22147.
Abstract
The objective of this paper is to determine a maximum averaging area for power density (PD) that limits the maximum temperature increase to a given threshold for frequencies above 6 GHz. This maximum area should be conservative for any transmitter at any distance >2 mm from the primary transmitting antennas or secondary field-generating sources. To derive a generically valid maximum averaging area, an analytical approximation for the peak temperature increase caused by localized exposure was derived. The results for a threshold value of 1 K temperature rise were validated against simulations of a series of sources composed of electrical and magnetic elements (dipoles, slots, patches, and arrays) that represented the spectrum of relevant transmitters. The validation was successful for frequencies in which the power deposition occurred superficially (i.e., >10 GHz). In conclusion, the averaging area for a PD limit of 10 W/m2 that conservatively limits the temperature increase in the skin to less than 1 K at any distance >2 mm from the transmitters is frequency dependent, increases with distance, and ranges from 3 cm2 at <10 GHz to 1.9 cm2 at 100 GHz. In the far-field, the area depends additionally on distance and the antenna array aperture. The correlation was found to be worse at lower frequencies (<10 GHz) and very close to the source, the systematic evaluation of which is part of another study to investigate the effect of different coupling mechanisms in the reactive near-field on the ratio of temperature increase to incident power density. The presented model can be directly applied to any other PD and temperature thresholds.
https://www.ncbi.nlm.nih.gov/pubmed/30383885
--

The Human Skin as a Sub-THz Receiver - Does 5G Pose a Danger to It or Not?

Betzalel N, Ben Ishai P, Feldman Y. The human skin as a sub-THz receiver - Does 5G pose a danger to it or not? Environ Res. 2018 May;163:208-216.
Highlights

• The sweat duct is regarded as a helical antenna in the sub-THz band, reflectance depends on perspiration.
• We outline the background for non-thermal effects based on the structure of sweat ducts.
• We have introduced a realistic skin EM model and found the expected SAR for the 5G standard.


Abstract

In the interaction of microwave radiation and human beings, the skin is traditionally considered as just an absorbing sponge stratum filled with water. In previous works, we showed that this view is flawed when we demonstrated that the coiled portion of the sweat duct in upper skin layer is regarded as a helical antenna in the sub-THz band.

Experimentally we showed that the reflectance of the human skin in the sub-THz region depends on the intensity of perspiration, i.e. sweat duct's conductivity, and correlates with levels of human stress (physical, mental and emotional). Later on, we detected circular dichroism in the reflectance from the skin, a signature of the axial mode of a helical antenna. The full ramifications of what these findings represent in the human condition are still unclear. We also revealed correlation of electrocardiography (ECG) parameters to the sub-THz reflection coefficient of human skin. In a recent work, we developed a unique simulation tool of human skin, taking into account the skin multi-layer structure together with the helical segment of the sweat duct embedded in it. The presence of the sweat duct led to a high specific absorption rate (SAR) of the skin in extremely high frequency band.
In this paper, we summarize the physical evidence for this phenomenon and consider its implication for the future exploitation of the electromagnetic spectrum by wireless communication. Starting from July 2016 the US Federal Communications Commission (FCC) has adopted new rules for wireless broadband operations above 24 GHz (5 G). This trend of exploitation is predicted to expand to higher frequencies in the sub-THz region. One must consider the implications of human immersion in the electromagnetic noise, caused by devices working at the very same frequencies as those, to which the sweat duct (as a helical antenna) is most attuned.
We are raising a warning flag against the unrestricted use of sub-THz technologies for communication, before the possible consequences for public health are explored.

https://www.ncbi.nlm.nih.gov/pubmed/29459303

Excerpt

The need for high data transmission rates, coupled with advances in semiconductor technology, is pushing the communications industry towards the sub-THz frequency spectrum. While the promises of a glorious future, resplendent with semi-infinite data streaming, may be attractive, there is a price to pay for such luxury. We shall find our cities, workspace and homes awash with 5 G base stations and we shall live though an unprecedented EM smog. The benefits to our society of becoming so wired cannot ignore possible health concerns, as yet unexplored. There is enough evidence to suggest that the combination of the helical sweat duct and wavelengths approaching the dimensions of skin layers could lead to non-thermal biological effects. Such fears should be investigated and these concerns should also effect the definition of standards for the application of 5G communications.


--

On Measuring Electromagnetic Fields in 5G Technology
Pawlak R, Krawiec P, Żurek J. On measuring electromagnetic fields in 5G technology. IEEE Access. 7: 29826-29835. March 5, 2019. DOI: 10.1109/ACCESS.2019.2902481

Abstract

At the awakening of the new 5G network as the network of services, issues related to electromagnetic fields (EMFs) will become one of the key aspects for the cost-effective establishment of the 5G infrastructure. The new 5G services will meet the rigorous demand for bandwidth through the implementation of a large number of densely located base stations operating in the millimeter-wave range. Introduction of new emission sources, working in parallel with already existing 2G/3G/4G mobile technologies, raises concerns about exceeding the admissible EMF exposure limits. This paper analyzes issues and challenges related to EMF measurements in 5G technology, which are crucial for the assessment of EMF compliance with regulatory limits. We point out that the existing methodologies, dedicated to EMF measurements in 2G, 3G, and 4G networks, are not suitable for 5G. The reason is the use of new techniques, such as massive MIMO and precise beamforming together with higher frequency bands so that the existing measurement methods can lead to significantly overestimated results when they will be applied to 5G networks. Such results, in conjunction with the restrictive legislation on the EMF limits that apply in some countries, may have the negative impact on 5G network deployment, making it difficult to achieve the intended 5G network capabilities. We also propose an alternative method of EMF exposure assessment that is based on calculations and simulations and allows obtaining an accurate estimation of the EMF distribution in the 5G environment.

Open access paper: https://ieeexplore.ieee.org/document/8660395


--

Radio Frequency Electromagnetic Field Exposure Assessment for Future 5G Networks
Persia S, Carciofi C, Barbiroli M, Volta C, Bontempelli D, Anania G. Radio frequency electromagnetic field exposure assessment for future 5G networks. IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2018. IEEE, 2018. doi:10.1109/PIMRC.2018.8580919

Abstract

The fifth generation of mobile network (5G) will relay not only on the expansion of existing fourth (4G) Long Term Evolution (LTE) network, but thanks to the introduction of new radio access in the millimetre wave bands will allow to meet new requirements in terms of connectivity and capacity. Specifically, 5G network will be characterized by the use of new spectrum at higher frequencies with a very large number of antenna elements deployment. As a consequence, the RF EMF (Radio Frequency Electromagnetic Field) compliance assessments with the regulatory requirements for human exposure for the installation permission needs to be revised accordingly. In this work, a Country case (Italy), where a more restrictive regulatory framework than the ICNIRP Guidelines is applied, has been analysed to investigate the impact of the restrictive approach on the future 5G mobile networks roll-out.

Conclusions

The EMF evaluations of existing cellular networks has been analysed in this work in order to highlight how restrictive regulatory framework than International Guidelines can affect 5G and future network deployment. Italy case study is considered as an example, due to its restrictive regulation to verify if it can permit an efficient 5G roll-out. This consideration has been confirmed by evaluations of the trend of saturated sites from 2010 to 2017 in Italy. Simulations demonstrate that in Italy the strong development expected for the evolution of 4G networks and, in the perspective of 5G systems, can be threatened with the stringent constraints imposed by the current regulatory framework for exposure to electromagnetic fields.

https://ieeexplore.ieee.org/document/8580919


--

Derivation of Safety Limits for 5G RF Exposure Based on Analytical Models & Thermal Dose
Neufeld E, Kuster N. Systematic Derivation of Safety Limits for Time-Varying 5G Radiofrequency Exposure Based on Analytical Models and Thermal Dose. Health Phys. 2018 Sep 21. 705-711. doi: 10.1097/HP.0000000000000930.

Abstract

Extreme broadband wireless devices operating above 10 GHz may transmit data in bursts of a few milliseconds to seconds. Even though the time- and area-averaged power density values remain within the acceptable safety limits for continuous exposure, these bursts may lead to short temperature spikes in the skin of exposed people. In this paper, a novel analytical approach to pulsed heating is developed and applied to assess the peak-to-average temperature ratio as a function of the pulse fraction α (relative to the averaging time T; it corresponds to the inverse of the peak-to-average ratio). This has been analyzed for two different perfusion-related thermal time constants (τ1 = 100 s and 500 s) corresponding to plane-wave and localized exposures. To allow for peak temperatures that considerably exceed the 1 K increase, the CEM43 tissue damage model, with an experimental-data-based damage threshold for human skin of 600 min, is used to allow large temperature oscillations that remain below the level at which tissue damage occurs. To stay consistent with the current safety guidelines, safety factors of 10 for occupational exposure and 50 for the general public were applied. The model assumptions and limitations (e.g., employed thermal and tissue damage models, homogeneous skin, consideration of localized exposure by a modified time constant) are discussed in detail.

The results demonstrate that the maximum averaging time, based on the assumption of a thermal time constant of 100 s, is 240 s if the maximum local temperature increase for continuous-wave exposure is limited to 1 K and α ≥ 0.1. For a very low peak-to-average ratio of 100 (α ≥ 0.01), it decreases to only 30 s. The results also show that the peak-to-average ratio of 1,000 tolerated by the International Council on Non-Ionizing Radiation Protection guidelines may lead to permanent tissue damage after even short exposures, highlighting the importance of revisiting existing exposure guidelines.

https://www.ncbi.nlm.nih.gov/pubmed/30247338


--

Human Exposure to RF Fields in 5G Downlink
Nasim I, Kim S. Human Exposure to RF Fields in 5G Downlink. Submitted on 10 Nov 2017 to IEEE International Communications Conference. arXiv:1711.03683v1.

Abstract
While cellular communications in millimeter wave (mmW) bands have been attracting significant research interest, their potential harmful impacts on human health are not as significantly studied. Prior research on human exposure to radio frequency (RF) fields in a cellular communications system has been focused on uplink only due to the closer physical contact of a transmitter to a human body. However, this paper claims the necessity of thorough investigation on human exposure to downlink RF fields, as cellular systems deployed in mmW bands will entail (i) deployment of more transmitters due to smaller cell size and (ii) higher concentration of RF energy using a highly directional antenna. In this paper, we present human RF exposure levels in downlink of a Fifth Generation Wireless Systems (5G). Our results show that 5G downlink RF fields generate significantly higher power density (PD) and specific absorption rate (SAR) than a current cellular system. This paper also shows that SAR should also be taken into account for determining human RF exposure in the mmW downlink.

https://arxiv.org/abs/1711.03683


--

Implications of EMF exposure limits on output power levels for 5G devices above 6 GHz

Colombi D, Thors B, Törnevik C. Implications of EMF exposure limits on output power levels for 5G devices above 6 GHz. IEEE Antennas and Wireless Propagation Letters. 14:1247-1249. 04 February 2015. DOI: 10.1109/LAWP.2015.2400331.
Abstract
Spectrum is a scarce resource, and the interest for utilizing frequency bands above 6 GHz for future radio communication systems is increasing. The possible use of higher frequency bands implies new challenges in terms of electromagnetic field (EMF) exposure assessments since the fundamental exposure metric (basic restriction) is changing from specific absorption rate (SAR) to power density. In this study, the implication of this change is investigated in terms of the maximum possible radiated power (P max ) from a device used in close proximity to the human body. The results show that the existing exposure limits will lead to a non-physical discontinuity of several dB in P max as the transition is made from SAR to power density based basic restrictions. As a consequence, to be compliant with applicable exposure limits at frequencies above 6 GHz, P max might have to be several dB below the power levels used for current cellular technologies. Since the available power in uplink has a direct impact on the system capacity and coverage, such an inconsistency, if not resolved, might have a large effect on the development of the next generation cellular networks (5G).
Conclusion
Above 6 GHz for FCC and 10 GHz for ICNIRP, EMF exposure limits are defined in terms of free-space power density rather than SAR. It was shown that at the transition frequency where the exposure metric changes, the maximum radiated power to meet compliance with ICNIRP and FCC EMF limits, for a device used in close proximity of the body, presents a strong discontinuity (in the order of 6 dB for the investigated case). This discrepancy has no scientific basis and is due to inconsistencies in the exposure limits. As a consequence, the estimated maximum output power in uplink for devices operating at frequencies above 6-10 GHz is about 18 dBm and 15 dBm for ICNIRP and FCC, respectively. These figures were obtained by numerical simulations of a canonical dipole at frequencies up to 70 GHz. It was shown that for more directive antennas, the maximum available power can be substantially lower. For the IEEE limits, the incongruity at the transition frequency is less evident. This is because the IEEE PD limits make use of a larger averaging area than the ICNIRP and FCC limits. The IEEE limits, however, have not yet been adopted in any national regulations.
With a growing interest for utilizing frequency bands above 6 GHz for mobile communications, it is important that the inconsistencies at the transition frequency from SAR to PD based basic restrictions are timely solved. If not, the observed discrepancy might have a large impact on the development of future mobile communication networks. We therefore encourage the relevant standardization organizations and regulatory authorities responsible for defining EMF exposure limits to address this issue.
https://ieeexplore.ieee.org/document/7031364

Expert Opinions

May 20, 2019

5G: The Unreported Global Threat

Devra Davis, PhD, Medium, May 18, 2019

https://medium.com/@devradavis/5g-the-unreported-global-threat-717c98c9c37d

--
Aug 18, 2017 (Updated Sep 27, 2017)
Scientists and Physicians Oppose
"Small Cell" Antenna Bill (Calif. SB 649)

I have been hearing from scientists around the world who are deeply concerned about the deployment of fifth generation (5G) wireless technology without adequate research on the health effects of exposure to this type of radio frequency radiation.

Following is a sample of letters sent to California Governor Brown asking him to veto SB 659, a "small cell" antenna bill written by the cellular industry that paves the way for deployment of 5G wireless technology across the state.

Professor Beatrice Golomb, MD, PhD, a professor of medicine in the School of Medicine at the University of California, San Diego. Dr. Golomb's letter begins with the following warning:
"I urge in the strongest terms that you vigorously oppose California SB 649.
If this bill passes, many people will suffer greatly, and needlessly, as a direct result.
This sounds like hyperbole. It is not.
My research group at UC San Diego alone has received hundreds of communications from people who have developed serious health problems from electromagnetic radiation, following introduction of new technologies. Others with whom I am in communication, have independently received hundreds of similar reports. Most likely these are a tip of an iceberg of tens or perhaps hundreds of thousands of affected person. As each new technology leading to further exposure to electromagnetic radiation is introduced – and particularly introduced in a fashion that prevents vulnerable individuals from avoiding it – a new group become sensitized to health effects. This is particularly true for pulsed signals in the radiowave and microwave portion of the spectrum, the type for which the proposed bill SB 640 will bypass local control."
In the letter, Dr. Golomb summarizes the research on the effects of exposure to radio frequency radiation and advocates for "safer, wired and well shielded technology – not more wireless."
Appended to the letter are 360 references to the scientific literature.
The letter can be downloaded at: https://bit.ly/SB649Golomb822.

Professor Martin Pall, PhD, Professor Emeritus of Biochemistry and Basic Medical Sciences at Washington State University, explains in his letter to the Governor his peer-reviewed research which has documented ...
"exquisite sensitivity to electromagnetic fields (EMFs) in the voltage sensors in each cell, such that the force impacting our cells at the voltage sensor has massive impact on the biology in the cells of our bodies."
"This new understanding [1-7] means we can debunk the claims of the wireless industry that there cannot be a mechanism for effects produced by these weak EMFs. The 20 years plus of industry propaganda claims are false. Rather the thousands of studies showing diverse health impacts of these EMFs can be explained. We now have a mechanism, one that is supported by both the biology and the physics, both of which are pointing in exactly the same direction."
"5G will be much more active in activating the VGCCs and producinghealth impacts because of its rapid absorption by materials in the body, because of its very rapid pulsations and because of the huge number antennae they are planning to put up, at least 200 times the number of antennae from all current cell phone towers. What this means is that the impacts on the outer one to two inches of our bodies will be massive."

His letter discusses the potential health impacts on humans and on agriculture with exposure to 5G radiation.

The letter can be downloaded at: https://bit.ly/SB649Pall


Dr. Michael Lipsett, MD, JD, a retired public health physician with extensive experience in environmental health, mentions in his letter the recent demand for a 5G moratorium by more than 180 scientists and physicians and the study of cell phone radiation conducted by the National Toxicology Program.

He points out that while individuals can take precautions to reduce their exposure to radiofrequency radiation emitted by wireless devices, this is not feasible with exposure from cell antennas. He notes that ...
"laboratory and human health investigations designed and conducted by independent researchers have reported associations linking exposure to radiation from cell phones or similar devices with multiple adverse effects (e.g., headaches, impacts on brain function, memory, learning and sleep; decreased sperm counts and quality) as well as with DNA damage and tumors of the brain and nervous system."
"Potential health impacts of wireless communication have been ignored or obscured for decades by the telecommunications industry, which has implied that cell phones and other devices are safe because they comply with federal safety standards. However, these standards were established more than 20 years ago and were based on assumptions that have since been called into question by health research studies. The push to establish a 5G network, exemplified by SB 649, is based on a similarly unproven assumption: i.e., that round-the-clock exposure to 5G frequencies will not affect human health or the environment.
Establishment of a 5G network will be irreversible, as will the pattern of near-universal exposure of California residents to high-frequency, as-yet-untested 5G electromagnetic radiation."
The letter can be downloaded at: https://bit.ly/LipsettSB649.

--
June 23, 2017


EMF Scientist Appeal Advisors Call for Moratorium on Policies
for 5G "Small Cell" Antennas

The advisors to the International EMF Scientist Appeal submitted a letter to the Federal Communications Commission (FCC) in opposition to a proposed change in FCC rules that would allow rapid deployment of 5th generation (5G) wireless infrastructure throughout the nation. A copy of the Appeal was appended to the letter.
5G involves transmission of millimeter waves which operate at much higher frequencies than currently used for cellular transmission (30 to 300 gigahertz). Because the range of these signals is limited (i.e., less than a football field), hundreds of thousands of new "small cell" antennas will be required in the U.S. The wireless industry wants to install these not-so-small cellular antennas on existing public utility poles.
The FCC intends to streamline the approval of these antennas which would further undermine the regulatory authority of cities and states over cell towers.
Meanwhile the wireless industry is lobbying for legislation in many states across the country that would limit local authority over cell antenna deployment.
Due to the concern that the FCC's new rules will result in increased exposure to electromagnetic fields (EMF), the Appeal's advisors oppose the new rules and call for a "public health review of the growing body of scientific evidence that includes reports of increasing rates of cancer and neurological diseases that may be caused by exposure to EMF from wireless sources."
The Appeal reflects the concerns of 225 EMF experts from 41 nations about the impact of EMF exposure on public health. All of the experts who signed this appeal have published research in peer-reviewed scientific journals about the biologic or health effects of EMF.
According to the Appeal's signatories, current national and international EMF exposure guidelines are obsolete and inadequate to protect human health and the environment. The FCC's radio frequency guidelines were adopted in 1996.
The letter (dated June 9, 2017) is signed by the five advisors to the International EMF Scientist Appeal: Drs. Martin Blank, Magda Havas, Henry Lai, and Joel Moskowitz, and Elizabeth Kelley.
For more information:
FCC filing detail (June 9, 2017)
FCC letter submitted by Advisors to International EMF Scientist Appeal
FCC submission: International EMF Scientist Appeal

International EMF Scientist Appeal Official Website
International EMF Scientist Appeal on Electromagnetic Fields and Wireless Technology
--
May 8, 2017

A 5G Wireless Future: Will it give us a smart nation or contribute to an unhealthy one?
Dr. Cindy Russell, The (SCCMA) Bulletin, Jan/Feb 2017
Safety testing for 5G is the same as other wireless devices. It is based on heat. This is an obsolete standard and not considering current science showing cellular and organism harm from non-thermal effects. There is a large gap in safety data for 5G biological effects that has been demonstrated in older studies including military.
Recommendations
1. Do not proceed to roll out 5G technologies pending pre-market studies on health effects.
2. Reevaluate safety standards based on long term as well as short term studies on biological effects.
3. Rescind a portion of Section 704 of the Telecommunications Act of 1996 which preempts state and local government regulation for the placement, construction, and modification of personal wireless service facilities on the basis of the environmental effects so that health and environmental issues can be addressed.
4. Rescind portions of The Spectrum Act which was passed in 2012 as part of the Middle Class Tax Relief and Job Creation Act, which strips the ability city officials and local governments to regulate cellular communications equipment, provides no public notification or opportunity for public input and may potentially result in environmental impacts.
5. Create an independent multidisciplinary scientific agency tasked with developing appropriate safety regulations, pre-market testing and research needs in a transparent environment with public input.
6. Label pertinent EMF information on devices along with appropriate precautionary warnings.
Dr. Russell provides a brief review of the research on millimeter wave bioeffects in this article: https://bit.ly/5GRussell.

--

Aug 17, 2016 (Updated Aug 19)

5G cellular technology will employ much higher frequency microwaves than current cell phone technologies: 2G, 3G, and 4G. These microwaves, known as millimeter waves, won't penetrate building materials like the current technology which is why industry may need one cell antenna base station for every 12 homes.
But millimeter waves can affect your eyes and penetrate your skin.

When the Los Angeles Times reporter contacted me for the story below, I did a quick search and found several recently published articles examining biological effects of millimeter waves (see references below). This form of microwave radiation is most likely to affect our skin and neuronal cells in the upper dermis.

Moreover, widespread adoption of 5G cellular technology in the U.S. may have profound effects on our ecosystem by altering bacteria, possibly creating harmful bacteria that are resistant to antibiotics.

History has proved that we cannot trust the FCC and the FDA to protect our health from microwave radiation exposure.


I submitted an open letter to the FCC in July calling for "an independent review of the biologic and health research to determine whether the RF standards should be modified before allowing additional spectrum to be used for new commercial applications."

Moreover, the FCC has ignored the 800-plus submissions that call upon the agency to adopt rigorous radio frequency standards to protect the public's health. Instead the agency maintains its 20-year old exposure guidelines that control only for heating or thermal risks. The FDA has ignored the thousands of studies that find nonthermal biologic effects, and the human studies that find a wide range of health effects including increased cancer risk and reproductive harm from exposure to low intensity microwaves.
In my opinion, precaution is warranted before unleashing 5G technology on the world. I suspect most of the 221 scientists who signed the International EMF Scientist Appeal (referenced in the article below), would support this assertion.

However, more research is also needed as specific characteristics of the millimeter waves (e.g., pulsing, modulation) to be employed in 5G cellular technology may be more important than the frequency or intensity of the waves in terms of biologic and health effects. The research funding must be independent of industry as conflicts of interest have been found to undermine the science in this field.
For an unbiased summary of the partial findings of the National Toxicology Program study of cancer risk from 2G cell phone radiation, see https://www.saferemr.com/2016/05/national-toxicology-progam-finds-cell.html.
--
Low-intensity millimeter waves used for pain therapy have side effects
The Russians have pioneered millimeter wave therapy (MWT) using low intensity millimeter waves to reduce pain including headaches, joint pain, and postoperative pain.

Although the following review paper documents some positive effects from short-term exposure to MWT, the authors note that there are side effects including fatigue, sleepiness, and paresthesia (an abnormal sensation, tingling or pricking ["pins and needles"] caused by pressure on or damage to peripheral nerves).
"We conclude that there is promising data from pilot case series and small-scale randomized controlled trials for analgesic/hypoalgesic effects of electromagnetic millimeter waves in frequency range 30–70 GHz. Large-scale randomized controlled trials on the effectiveness of this non-invasive therapeutic technique are necessary."
"In the studies reviewed the authors did not report any health-related side effects of MWT. Slight paresthesias, previously mentioned in several case reports and non-controlled case series (10,11), appeared in almost 50% of patients in studies where the effects of MWT were carefully described (21,27,28,31). The paresthesias were of short duration and reported as pleasant ('warmth') or neutral. General fatigue and sleepiness during the treatment sessions in almost 80% of the patients was a rather desirable side effect of MWT, as also described in previous reviews on biomedical effects of MWT (10,11,21,27,28)."
From: Usichenko TI, Edinger H, Gizhko VV, Lehmann C, Wendt M, Feyerherd F. Low-intensity electromagnetic millimeter waves for pain therapy. Evid Based Complement Alternat Med. 2006 Jun;3(2):201-7. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1475937/
Little research is available on long-term exposure to millimeter waves (see below). Most of the studies referred to in this review paper did not modulate or pulse the carrier waves which will be required for information-carrying millimeter waves employed in 5G technologies. Prior research suggests that such waves will be more biologically active than pure sine waves.

Additional Resources (Updated 3/13/2022)
D. B. Deaconescu, A. M. Buda, D. Vatamanu, S. Miclaus. The Dynamics of the Radiated Field Near a Mobile Phone Connected to a 4G or 5G Network. Eng. Technol. Appl. Sci. Res. 12(1):8101–8106, Feb. 2022.
ANFR (France). Study of the 5G contribution to exposure of the general public to electromagnetic waves: Preliminary Report. Dec 2021.

Sally Beare. How green is 5G? Envirotec Magazine, Nov 2021.
Sam Aerts, Kenneth Deprez, Davide Colombi, Matthias Van den Bossche, Leen Verloock, Luc Martens, Christer Törnevik, Wout Joseph. In Situ Assessment of 5G NR Massive MIMO Base Station Exposure in a Commercial Network in Bern, Switzerland. Appl. Sci. 11(8): 3592. 2021. https://doi.org/10.3390/app11083592.
Kyuri Kim, Young Seung Lee, Nam Kim, Hyung-Do Choi, Dong-Jun Kang, Hak Rim Kim, Kyung-Min Lim. Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation In Vitro. Int J Mol Sci. 2020 Dec 26;22(1):E170. doi: 10.3390/ijms22010170.
El-Hajj AM, Naous T. Radiation analysis in a gradual 5G network deployment strategy. 2020 IEEE 3rd 5G World Forum (5GWF), Bangalore, India IEEE, 2020: 448-453, ISBN 9781728173009. (Austin, TX simulation)
Koh TH, Choi JW, Seo M, Choi H-D, Kim KH. Factors affecting risk perception of electromagnetic waves from 5G network base stations. Bioelectromagnetics. 31 August 2020. Open access paper.
Electromagnetic Radiation Safety. 5G Research from the EMF-Portal Archive: 133 papers and presentations. Apr 1, 2020.
Lin JC. Telecommunications health and safety: US FCC affirms its current safety limits for RF radiation and 5G wireless. Radio Science Bulletin 2019; 2019 (371): 87-89.
Lin JC. Health Safety Guidelines and 5G Wireless Radiation [Health Matters]. IEEE Microwave Magazine. 23(1):10-17. Jan. 2022, doi: 10.1109/MMM.2021.3117307.
Pujol F, Manero C, Ropert S, Enjalbal A, Lavender T, Jervis V, Rudd R, Marcus JS. Study on using millimetre waves bands for the deployment of the 5G ecosystem in the Union: Final Report. A study prepared for the European Commission. doi: 10.2759/703052. 2019.

Mehdizadeh AR, Mortazavi SMJ. Editorial. 5G technology: Why should we expect a shift from RF-induced brain cancers to skin cancers? J Biomed Phys Eng. 2019.
"In summary, although 5G technology brings new risks, it should be noted that regarding mobile phone use and cancer, the level of exposure is a factor that really matters."

The essential 5G glossary of key terms and phrases
Michaela Goss, Tech Target, Aug 12, 2019

Senator Blumenthal Raises Concerns on 5G Wireless Technology Health Risks at Senate Hearing
U.S. Senate Commerce Committee Hearing, Feb 6, 2019 (5 minute video)
"We're kind of flying blind here so far as health and safety is concerned."

Is 5G Harmful for Humans and the Environment? Kashyap Vyas, Interesting Engineering, Jan 27, 2019
U.S. Senator Blumenthal briefing on possible health risks posed by 5G wireless technology Congressional news briefing, Connecticut Network, Dec 3, 2018 (22 minute video)

Congressional letter to FCC Commissioner requesting evidence for safety of 5G
Richard Blumenthal, Anna G. Eshoo, Dec 3, 2018

Resistance to 5G: Roadblock to a High Tech Future or Warning of a Serious Health Risk? Conan Milner, Epoch Times, November 9, 2018
The roll out of 5G wireless service is 'a massive health experiment,' public health expert warns as cell companies install 800,000 towers across the US
Natalie Rahhal, Daily Mail, May 29, 2018

The 5G telecommunication technology--emitted millimeter waves: Lack of research on bioeffects
Dariusz Leszczynski, PhD, Presentation at 5th Asian & Oceanic IRPA Regional Congress on Radiation Protection, Melbourne, Australia, May 22, 2018

NEPA rollback now official for small wireless projects
Sobczyk N, GreenWire, May 3, 2018

5G: Great risk for EU, U.S. and International Health! Compelling Evidence for
Eight Distinct Types of Great Harm Caused by Electromagnetic Exposures and the Mechanism that Causes Them
Martin L. Pall, PhD, undated

5G and Internet of Things: A Trojan Horse
Paul Héroux, PhD, The Green Gazette, Mar 27, 2018

Residents worried about small cell safety have been waiting years for federal guidance
Ryan Barwick, Center for Public Integrity, Mar 2, 2018
5G Cell Service Is Coming. Who Decides Where It Goes?
Allan Holmes, New York Times, Mar 2, 2018


'Tsunami of data' could consume one fifth of global electricity by 2025
The Guardian, Dec 11, 2017

California: Bill to ease permits for cellular antennas could impact health
Tracy Seipel. Mercury News (San Jose, CA), Aug 31, 2017
Is 5G technology dangerous? Early data shows a slight increase of tumors in male rats exposed to cellphone radiation Jim Puzzanghera, Los Angeles Times, Aug 8, 2016
Electromagnetic Radiation Safety
3.2.2024 22:55

Effect of Mobile Phones on Sperm Quality


Gautam R, Arora T. Radio Frequency Electromagnetic Radiation (RF-EMR) Emitted from Mobile Phone and its Impact on Male Reproductive Health. EIACP: Diversity and Impact on the Environment. 28(3):8-11. 2023.


Diagram representing various sources of RF EMF exposure effect on brain and testicular organ and deleterious outcomes (Kesari, Agarwal & Henkel, 2018)
Review Papers

Detrimental impact of cell phone radiation on sperm DNA integrity

Koohestanidehaghi Y, Khalili MA, Dehghanpour F, Seify M. Detrimental impact of cell phone radiation on sperm DNA integrity. Clin Exp Reprod Med. 2024 Jan 24. doi: 10.5653/cerm.2023.06121.

Abstract

Radiofrequency electromagnetic radiation (RF-EMR) from various sources may impact health due to the generation of frequency bands. Broad pulses emitted within frequency bands can be absorbed by cells, influencing their function. Numerous laboratory studies have demonstrated that mobile phones-generally the most widely used devices-can have harmful effects on sex cells, such as sperm and oocytes, by producing RF-EMR. Moreover, some research has indicated that RF-EMR generated by mobile phones can influence sperm parameters, including motility, morphology, viability, and (most critically) DNA structure. Consequently, RF-EMR can disrupt both sperm function and fertilization. However, other studies have reported that exposure of spermatozoa to RF-EMR does not affect the functional parameters or genetic structure of sperm. These conflicting results likely stem from differences among studies in the duration and exposure distance, as well as the species of animal used. This report was undertaken to review the existing research discussing the effects of RF-EMR on the DNA integrity of mammalian spermatozoa.

EMW can induce oxidative stress, which subsequently leads to disorders such as reduced mobility, morphological changes, acrosome disturbances, and ultimately, damage to the nucleus and genetic material. This oxidative damage to DNA can result in the breakdown of both single-stranded and double-stranded DNA structures, culminating in fragmentation. If the DNA is not repaired and the damage accumulates, the sperm may undergo apoptosis. Damage to the sperm genome can ultimately impact fertility, potentially leading to infertility. Therefore, it is advisable to limit daily exposure to these sources to prevent irreversible damage caused by EMWs. Many men carry their cell phones in their trouser pockets or clipped to their belts, and the use of Bluetooth can increase their susceptibility to RF-EMR exposure. This exposure can induce changes in sperm quality through oxidative stress, potentially leading to infertility. Agarwal et al. [11] suggested that carrying a cell phone in a pocket could lead to a decline in sperm quality. However, it is important to note that the phone and male reproductive organs are separated by multiple tissue layers. Therefore, extrapolating these in vitro effects to real-life conditions requires further studies [11].


In July 2021, the European Parliament commissioned a research report titled "Health impact of 5G." The report concluded that the commonly used RF-EMFs are likely carcinogenic to humans and have a definitive impact on male fertility. It also suggested potential adverse effects on the development of embryos, fetuses, and newborns. To mitigate these adverse effects, the organization proposed several strategies. These include favoring non-wireless connections, increasing distance from the source of RF-EMFs, switching off devices when not in use, and practicing safe phone usage [55].

Open access paper: https://ecerm.org/journal/view.php?doi=10.5653/cerm.2023.06121

--

Genotoxic Risks to Male Reproductive Health from Radiofrequency Radiation

Kaur P, Rai U, Singh R. Genotoxic Risks to Male Reproductive Health from Radiofrequency Radiation. Cells. 2023; 12(4):594. https://doi.org/10.3390/cells12040594.

Abstract
During modern era, mobile phones, televisions, microwaves, radio, and wireless devices, etc., have become an integral part of our daily lifestyle. All these technologies employ radiofrequency (RF) waves and everyone is exposed to them, since they are widespread in the environment. The increasing risk of male infertility is a growing concern to the human population. Excessive and long-term exposure to non-ionizing radiation may cause genetic health effects on the male reproductive system which could be a primitive factor to induce cancer risk. With respect to the concerned aspect, many possible RFR induced genotoxic studies have been reported; however, reports are very contradictory and showed the possible effect on humans and animals. Thus, the present review is focusing on the genomic impact of the radiofrequency electromagnetic field (RF-EMF) underlying the male infertility issue. In this review, both in vitro and in vivo studies have been incorporated explaining the role of RFR on the male reproductive system. It includes RFR induced-DNA damage, micronuclei formation, chromosomal aberrations, SCE generation, etc. In addition, attention has also been paid to the ROS generation after radiofrequency radiation exposure showing a rise in oxidative stress, base adduct formation, sperm head DNA damage, or cross-linking problems between DNA & protein.
Conclusions
The present review reveals a better understanding of the genotoxic effects of radiofrequency radiation on male reproductive health emitted from mobile phones, laptops, microwaves, wireless networks, etc. The study focused on different endpoints such as DNA damage, micronuclei formation and genomic instability, SCE & chromosomal aberrations covering both in vitro and in vivo parameters. The available information following in vitro and in vivo exposure shows that all the yielded data has both positive and negative results. In this review, studies reported DNA fragmentation, apoptosis, and elevated protein expression in both human and animal spermatozoa, concluding a decrease in viability, mitochondrial genomic destruction and DNA strand breaks. Further micronuclei formation, SCE and chromosomal aberrations are also found to cause abnormalities, leading to the accumulation of mutations and hence causing cancer risk. While controversial investigation, on the other hand, supported with no effect on cellular apoptosis or DNA integrity. Our present study reviewed that RFR has insufficient energy production to generate genomic damage. Yet, such effects were probably found to be responsible for male infertility due to the indirect mechanism of oxidative stress via ROS generation in the exposed system. Few studies also suggested that the damage due to the cumulative effect of repeated exposure varies with physical parameters such as distance from the radiation source, short-term or long-term exposure duration, penetration depth, and frequency of exposure. Therefore, considering all data together, the present review supports the capability of radiofrequency radiation to induce genotoxicity underlying male infertility keeping some limitations in mind, since the report is a conclusion of narrative study and limited literature were found explaining the actual mechanism of micronuclei formation, sister chromatid exchange, chromosomal aberration and genomic instability. Hence, more studies are needed to elucidate the DNA damage mechanism with more robust study designs favoring potential genotoxic effects of RFR on male reproductive health.
Open access paper: https://www.mdpi.com/2073-4409/12/4/594

--

Pusan National University scientists reveal links between sperm quality and cell phone use

The findings of their updated meta-analysis hint at the potential dangers of modern electronic gadgets

Pusan National University, News Release

An infographic depicting the key findings of the new meta-analysis

image: After examining a series of studies from 2012 to 2021, researchers have performed an updated meta-analysis that clearly indicates the connection between cell phone and decreased sperm quality. view more

Credit: Pusan National University

Cell phones have succeeded in bringing the world closer, making life tolerable during a very trying time. But cellphones also have their downsides. They can have negative effects on health. This is because cell phones emit radiofrequency electromagnetic waves (RF-EMWs), which are absorbed by the body. According to a meta-analysis from 2011, data from previous studies indicate that RF-EMWs emitted by cell phones degrade sperm quality by reducing their motility, viability, and concentration. However, this meta-analysis had a few limitations, as it had low amounts of in vivo data and considered cell phone models that are now outdated.

In an effort to bring more up-to-date results to the table, a team of researchers led by Assistant Professor Yun Hak Kim from Pusan National University, Korea, conducted a new meta-analysis on the potential effects of cell phones on sperm quality. They screened 435 studies and records published between 2012 and 2021 and found 18—covering a total of 4280 samples—that were suitable for the statistical analyses. Their paper was made available online on July 30, 2021 and was published in Volume 202 of Environmental Research in November, 2021.

Overall, the results indicate that cell phone use is indeed associated with reduced sperm motility, viability, and concentration. These findings are more refined than those from the previous meta-analysis thanks to a better subgroup analysis of the data. Another important aspect that the researchers looked into was if higher exposure time to cell phones was correlated to lower sperm quality. However, they found out that the decrease in sperm quality was not significantly related to exposure time—just to exposure to mobile phones itself. Considering the results were consistent across both in vivo and in vitro (cultured sperm) data, Dr. Kim warns that "Male cell-phone users should strive to reduce mobile phone use to protect their sperm quality."

Knowing that the number of cell phone users is most likely going to increase in the future, it's high time we start considering exposure to RF-EMW as one of the underlying factors causing a reduction in sperm quality among the male population. Moreover, seeing how technologies evolve so quickly, Dr. Kim remarks that "additional studies will be needed to determine the effect of exposure to EMWs emitted from new mobile phone models in the present digital environment." The bottom line is, if you're worried about your fertility (and potentially other aspects of your health), it may be a good idea to limit your daily cell phone use.

https://www.eurekalert.org/news-releases/941005

--

Effects of mobile phone usage on sperm quality – No time-dependent relationship on usage: A systematic review and updated meta-analysis

Sungjoon Kim, Donghyun Han, Jiwoo Ryu, Kihun Kim, Yun Hak Kim. Effects of mobile phone usage on sperm quality – No time-dependent relationship on usage: A systematic review and updated meta-analysis. Environmental Research. 202:111784, 2021. doi:10.1016/j.envres.2021.111784.
Abstract

Background Mobile phones emit radiofrequency (RF) electromagnetic waves (EMWs), a low-level RF that can be absorbed by the human body and exert potential adverse effects on the brain, heart, endocrine system, and reproductive function. Owing to the novel findings of numerous studies published since 2012 regarding the effect of mobile phone use on sperm quality, we conducted a systematic review and updated meta-analysis to determine whether the exposure to RF-EMWs affects human sperm quality.

Methods This study was conducted in accordance with the PRISMA guidelines. The outcome measures depicting sperm quality were motility, viability, and concentration, which are the most frequently used parameters in clinical settings to assess fertility.
Results We evaluated 18 studies that included 4280 samples. Exposure to mobile phones is associated with reduced sperm motility, viability, and concentration. The decrease in sperm quality after RF-EMW exposure was not significant, even when the mobile phone usage increased. This finding was consistent across experimental in vitro and observational in vivo studies.

Discussion Accumulated data from in vivo studies show that mobile phone usage is harmful to sperm quality. Additional studies are needed to determine the effect of the exposure to EMWs from new mobile phone models used in the present digital environment.
Excerpts
"... 18 studies fulfilled all inclusion criteria and were included in the meta-analysis (Table 1 and Fig. 1) (Agarwal et al., 2008, 2009; Ahmad and Baig, 2011; Al-Bayyari, 2017b; De Iuliis et al., 2009; Ding et al., 2018a; Dkhil et al., 2011; Erogul et al., 2006; Falzone et al., 2008; Fejes et al., 2005; Kaya et al., 2020; Malini, 2017b; Rago et al., 2013; Sajeda and Al-Watter, 2011; Veerachari and Vasan, 2012; Wdowiak et al., 2018; Yildirim et al., 2015; Zalata et al., 2015). Nine studies from a previous meta-analysis and nine new studies that included 4280 samples were used for analysis. One conference paper included in the previous study was excluded. The sperm quality parameters established in each paper varied and were subjected to a meta-analysis; 16 papers provided data on sperm motility, 6 provided data on sperm viability, and 12 provided data on sperm concentration. All in vitro studies were experimental, whereas all in vivo studies were observational. We identified the MD values of the entire 4280 samples and analyzed the MD values of each group after classifying them according to four criteria: control group setting (non-exposure vs. less exposure), study design (in vivo and in vitro), participant group (fertility clinic and population), and storage location (trousers or not)."
Conclusion

"Mobile phone use decreased the overall sperm quality by affecting the motility, viability, and concentration. It was further reduced in the group with high mobile phone usage. In particular, the decrease was remarkable in in vivo studies with stronger clinical significance in subgroup analysis. Therefore, long-term cell phone use is a factor that must be considered as a cause of sperm quality reduction. Additional studies are needed to determine the effect of the exposure to EMWs emitted from new mobile phone models in the present digital environment."
https://www.sciencedirect.com/science/article/pii/S0013935121010781
--
Romualdo Sciorio, Luca Tramontano, Sandro C Esteves. Effects of mobile phone radiofrequency radiation on sperm quality. Zygote. 2021 Aug 13;1-10. doi: 10.1017/S096719942100037X
Abstract

In the last decades, the universal use of mobile phones has contributed to radiofrequency electromagnetic radiation environmental pollution. The steady growth in mobile phone usage has raised concerns about the effects of phone radiation on male reproductive health. Epidemiological studies report a sharp decline in sperm counts in developing countries, and worldwide with c. 14% of couples having difficulties to conceive, many of which are attributed to a male infertility factor. Environment and lifestyle factors are known to contribute to male infertility. Exposure to heat, radiation, or radioactivity might induce damage to biological tissue organs, including the testis. Given the ubiquitous use of mobile phones, the potential adverse effects of the resulting environmental radiation needs to be elucidated further. It seems to be an apparent relationship between the increased exposure to mobile phone radiofrequency and sperm quality decline, but the evidence is not conclusive. Our review summarizes the evidence concerning the possible adverse effects of cell phone radiation on the male reproductive system, with a focus on sperm quality. Also, we critically analyze the effects of elevated testicular temperature and oxidative stress on male fertility and how these factors could interfere with the physiological activities of the testis.
https://pubmed.ncbi.nlm.nih.gov/34384508/
Future perspectives and conclusions

The rapid technological advances in personal computers and communication devices might pose a risk for human health. Cell phone devices emit radiofrequency electromagnetic waves that seem to affect male reproductive health and other body functions (McClelland 3rd and Jaboin, 2018; Sage and Burgio, 2018; Wall et al., 2019). Although the current data are not unequivocal, it seems sound to speculate that mobile phone exposure might be contributing to subfertility. However, the existing evidence primarily relates to adverse effects on sperm motility and morphology, which are limited endpoints for evaluating the male fertility potential.

The exact mechanisms of how RF-EMR might affect the testis, epididymis, and sperm have not yet been fully understood. Additional studies are warranted, particularly prospective studies assessing sperm functional markers, such as sperm DNA integrity and OS, in fertile and subfertile men. Equally important will be to analyze whether the decreased sperm quality associated with mobile phone exposure translates into impaired pregnancy chances. The effects of short-term and long-term exposure and energy intensity should be also investigated in more detail, taking into account relevant confounders. Only then will scientific societies and regulatory bodies be able to provide users with transparent information concerning the risks and guidance for proper use.
--





Gang Yu, Zhiming Bai, Song Chao, Qing Cheng, Gang Wang, Zeping Tang, Sixing Yang. Current progress on the effect of mobile phone radiation on sperm quality: an updated systematic review and meta-analysis of human and animal studies. Environmental Pollution. Published online: 30 March 2021. https://doi.org/10.1016/j.envpol.2021.116952.
Highlights

• Mobile phone use was related to sperm quality decline of men in some areas.
• Mobile phone RF-EMR directly impaired mature sperm of men in vitro.
• Mobile phone RF-EMR affected some parameters of sperm quality in experiment animals.
• Experiment conditions affected pooled results of animal experiments.
• More studies should be conducted to investigate this issue in new era.


Abstract
Potential suppression of fertility due to mobile phone radiation remains a focus of researchers. We conducted meta-analyses on the effects of mobile phone radiation on sperm quality using recent evidence and propose some perspectives on this issue. Using the MEDLINE/PubMed, Embase, WOS, CENTRAL, and ClinicalTrials.gov databases, we retrieved and screened studies published before December 2020 on the effects of mobile phone use/mobile phone RF-EMR on sperm quality.
Thirty-nine studies were included. Data quality and general information of the studies were evaluated and recorded. Sperm quality data (density, motility, viability, morphology, and DFI) were compiled for further analyses, and we conducted subgroup, sensitivity, and publication bias analyses.
The pooled results of human cross-sectional studies did not support an association of mobile phone use and a decline in sperm quality. Different study areas contributed to the heterogeneity of the studies. In East Europe and West Asia, mobile phone use was correlated with a decline in sperm density and motility. Mobile phone RF-EMR exposure could decrease the motility and viability of mature human sperm in vitro.
The pooled results of animal studies showed that mobile phone RF-EMR exposure could suppress sperm motility and viability. Furthermore, it reduced sperm density in mice, in rats older than 10 weeks, and in rats restrained during exposure. Differences regarding age, modeling method, exposure device, and exposure time contributed to the heterogeneity of animal studies. Previous studies have extensively investigated and demonstrated the adverse effects of mobile phone radiation on sperm.
In the future, new standardized criteria should be applied to evaluate potential effects of mobile phone RF-EMR dosages. Further sperm-related parameters at the functional and molecular levels as well as changes in biological characteristics of germ cells should be evaluated. Moreover, the impact of mobile phone RF-EMR on individual organs should also be examined.
Conclusion

The results of our meta-analysis indicated that in East Europe and West Asia, mobile phone use is associated with a decline in human sperm density and motility. Mobile phone RF-EMR can reduce motility and viability of mature human sperm in vitro, and it can also reduce sperm motility and viability in male animals and decrease sperm density of sexually mature restrained rats. Some important factors that affect the results of animal experiments are study setup and radiation device as well as age and exposure time. Our study is an extension of previous studies and has scientific value for future studies on effects of mobile phone RF-EMR associated with sperm quality.

https://www.sciencedirect.com/science/article/abs/pii/S0269749121005340
--
Pooja Negi, Rajeev Singh. Association between reproductive health and nonionizing radiation exposure. Electromagnetic Biology and Medicine. Published online: 20 Jan 2021. DOI: 10.1080/15368378.2021.1874973.
Abstract

Recently, a decreasing rate of fertility has to be credited to an array of factors such as environmental, health and lifestyle. Male infertility is likely to be affected by the strong exposure to heat and radiations. The most common sources of nonionizing radiations are cell phones, laptops, Wi-Fi and microwave ovens, which may participate to the cause of male infertility. One of the major sources of daily exposure to non-ionizing radiation is mobile phones. A mobile phone is now basically dominating our daily life through better services such as connectivity, smartphone devices. However, the health consequences are linked with their usage are frequently ignored. Constant exposure to non-ionizing radiations produced from a cell phone is one of the possible reasons for growing male infertility. Recently, several studies have shown that cell phone users have altered sperm parameters causing declining reproductive health. Cell phone radiation harms male fertility by affecting the different parameters like sperm motility, sperm count, sperm morphology, semen concentration, morphometric abnormalities, increased oxidative stress along with some hormonal changes. This review is focusing on the prevailing literature from in vitro and in vivo studies suggesting that non-ionizing exposure negatively affects human male infertility.


Negi & Singh, 2021

Conclusion

Generally, the outcome of the studies has indicated that mobile phone usage changes different sperm parameters in both ways in-vitro (human) and in-vivo (animals). Several studies disclose that the exposure to cell phones produces harmful effects on the testes, which may affect sperm motility, sperm number, sperm concentration, and morphology and an increased DNA damage, causing micronuclei formation and reactive oxygen species within the cell. So many evidences showed that exposure from cell phones results in elevated oxidative stress with disintegrated DNA and it is directly and indirectly dependent on the time of cell phone use. Further researches are required to provide strong evidence that the use of mobile phones may disturb sperm and testicular activity. Several evidences suggest that the irregularities reported due to RF-EMF-exposure depend on physical parameters such as utilized RF wavelength, penetration range into the object, and transmission length of the radiation. Unfortunately, existing studies are not able to suggest a true mechanism between the harmful effects of RF-EMF radiation and the male reproductive system. To conclude all of the above, government bodies and agencies should form strong guidelines against cell phone exposure and take preventive actions such as in the usage of mobile phones, preventing chatting, reducing the overall contact time, and holding the gadget away from the groin may be of significant help to people pursuing fertility. Moreover, very limited studies are available on protective actions so far so a large-scale analysis is also required to determine the reproductive parameters.

https://www.tandfonline.com/doi/abs/10.1080/15368378.2021.1874973?src=&journalCode=iebm20

--
Chidiebere Emmanuel Okechukwu. Does the Use of Mobile Phone Affect Male Fertility? A Mini-Review. J Hum Reprod Sci. Jul-Sep 2020;13(3):174-183. doi: 10.4103/jhrs.JHRS_126_19.
Abstract

Presently, there is a rise in the use of mobile phones, laptops, and wireless internet technologies such as Wi-Fi and 5G routers/modems across the globe; these devices emit a considerable amount of electromagnetic radiation (EMR) which could interact with the male reproductive system either by thermal or nonthermal mechanisms. The aim of this review was to examine the effects of mobile phone use on male fertility. Related studies that reported on the effects of EMR from mobile phones on male fertility from 2003 to 2020 were evaluated. PubMed database was used. The Medical Subject Heading system was used to extract relevant research studies from PubMed. Based on the outcomes of both human and animal studies analyzed in this review, animal and human spermatozoa exposed to EMR emitted by mobile phones had reduced motility, structural anomalies, and increased oxidative stress due to overproduction of reactive oxygen species. Scrotal hyperthermia and increased oxidative stress might be the key mechanisms through which EMR affects male fertility. However, these negative effects appear to be associated with the duration of mobile phone use.

Conclusion

Based on the outcomes of both human and animal studies examined in this review, animal and human spermatozoa exposed to EMR emitted by mobile phones had reduced motility, structural anomalies, and increased oxidative stress due to the production of ROS. Scrotal hyperthermia and increased oxidative stress might be the key mechanisms by which EMR affects male fertility. However, these negative effects appear to be associated with the duration of mobile phone use.

Open access paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727890/

--
Jaffar FHF, Osman K, Ismail NH, Chin KY, Ibrahim SF. Adverse Effects of Wi-Fi Radiation on Male Reproductive System: A Systematic Review. Tohoku J Exp Med. 2019;248(3): 169-179. doi: 10.1620/tjem.248.169. (Note: Smartphones emit Wi-Fi, Bluetooth and various types of cellular radiation.)

Abstract

Extensive use of Wi-Fi has contributed to radiofrequency electromagnetic radiation (RF-EMR) pollution in environment. Various studies have been conducted to evaluate the effect of RF-EMR emitted by Wi-Fi transmitter on male reproduction health. However, there are conflicting findings between studies. Thus, this review aims to elucidate the possible effects of 2.45 GHz Wi-Fi exposure on both animal and human male reproductive system. A computerized database search performed through MEDLINE via Ovid and PUBMED with the following set of keywords: 'Wi-Fi or WiFi or wireless fidelity or Wi-Fi router or WiFi router or electromagnetic or radiofrequency radiation' AND 'sperm or spermatozoa or spermatogenesis or semen or seminal plasma or testes or testis or testosterone or male reproduction' had returned 526 articles. Only 17 studies conformed to pre-set inclusion criterion. Additional records identified through Google Scholar and reviewed article further revealed six eligible articles. A total of 23 articles were used for data extraction, including 15 studies on rats, three studies on mice, and five studies on human health. Sperm count, motility and DNA integrity were the most affected parameters when exposed to RF-EMR emitted by Wi-Fi transmitter. Unfortunately, sperm viability and morphology were inconclusive. Structural and/or physiological analyses of the testes showed degenerative changes, reduced testosterone level, increased apoptotic cells, and DNA damage. These effects were mainly due to the elevation of testicular temperature and oxidative stress activity. In conclusion, exposure towards 2.45 GHz RF-EMR emitted by Wi-Fi transmitter is hazardous on the male reproductive system.

Open access paper: https://www.jstage.jst.go.jp/article/tjem/248/3/248_169/_article

--

Kesari KK, Agarwal A, Henkel R. Radiation and male fertility. Reprod Biol Endocrinol. 2018 Dec 9;16(1):118. doi: 10.1186/s12958-018-0431-1.

Abstract During recent years, an increasing percentage of male infertility has to be attributed to an array of environmental, health and lifestyle factors. Male infertility is likely to be affected by the intense exposure to heat and extreme exposure to pesticides, radiation, radioactivity and other hazardous substances. We are surrounded by several types of ionizing and non-ionizing radiations and both have recognized causative effects on spermatogenesis. Since it is impossible to cover all types of radiation sources and their biological effects under a single title, this review is focusing on radiation deriving from cell phones, laptops, Wi-Fi and microwave ovens, as these are the most common sources of non-ionizing radiation, which may contribute to the cause of infertility by exploring the effect of exposure to radiofrequency radiation on the male fertility pattern. From currently available studies it is clear that radiofrequency electromagnetic fields (RF-EMF) have deleterious effects on sperm parameters (like sperm count, morphology, motility), affects the role of kinases in cellular metabolism and the endocrine system, and produces genotoxicity, genomic instability and oxidative stress. This is followed with protective measures for these radiations and future recommendations. The study concludes that the RF-EMF may induce oxidative stress with an increased level of reactive oxygen species, which may lead to infertility. This has been concluded based on available evidence from in vitro and in vivo studies suggesting that RF-EMF exposure negatively affects sperm quality. Open access paper: https://rbej.biomedcentral.com/articles/10.1186/s12958-018-0431-1

--
Ford-Glanton BS, Melendez DA. Male reproductive toxicants: Electromagnetic radiation and heat. Reference Module in Biomedical Sciences, 2018.
Abstract

Human population in today's world lives surrounded by radiofrequency fields (RF) and electromagnetic radiation (EM) fields, transmitting almost all forms of electronic communication and data that humans produce every second. Mobile devices and laptop computers are EMR-emitting devices. The effect of mobile phone emitted radiation and heat on fertility is the subject of recent interest and investigations. Many studies have found a decrease in semen quality which has increased the focus on male reproductive health. Infertility affects approximately 15% of couples of reproductive age, and nearly half of these cases are linked to male fertility (Sharlip et al., 2002). Different harmful environmental influences have led to changes in semen analysis standards by reducing the lower limits of normal ranges, which were declared by the World Health Organization (2010). The possible negative impact of mobile phone radiation on sperm quality has been well established. While no certain conclusions can be drawn from current evidence, a growing number of studies indicate a decrease in male fertility associated with increased cellular phone usage (Agarwal et al., 2011) and laptop computers using Wi-Fi (Avendaño et al., 2012a). Here we review the current evidence regarding the effects of electromagnetic radiation and heat in male fertility.

https://www.sciencedirect.com/science/article/pii/B9780128012383645361

--

Yahyazadeh A, Deniz OG, Kaplan AA, Altun G, Yurt KK, Davis D. The genomic effects of cell phone exposure on the reproductive system. Environ Res. 2018 Nov;167:684-693. doi: 10.1016/j.envres.2018.05.017.


Abstract

Humans are exposed to increasing levels of electromagnetic fields (EMF) at various frequencies as technology advances. In this context, improving understanding of the biological effects of EMF remains an important, high priority issue. Although a number of studies in this issue and elsewhere have focused on the mechanisms of the oxidative stress caused by EMF, the precise understanding of the processes involved remains to be elucidated. Due to unclear results among the studies, the issue of EMF exposure in the literature should be evaluated at the genomic level on the reproductive system. Based on this requirement, a detail review of recently published studies is necessary. The main objectives of this study are to show differences between negative and positive effect of EMF on the reproductive system of animal and human. Extensive review of literature has been made based on well known data bases like Web of Science, PubMed, MEDLINE, Google Scholar, Science Direct, Scopus. This paper reviews the current literature and is intended to contribute to a better understanding of the genotoxic effects of EMF emitted from mobile phones and wireless systems on the human reproductive system, especially on fertility. The current literature reveals that mobile phones can affect cellular functions via non-thermal effects. Although the cellular targets of global system for mobile communications (GSM)-modulated EMF are associated with the cell membrane, the subject is still controversial. Studies regarding the genotoxic effects of EMF have generally focused on DNA damage. Possible mechanisms are related to ROS formation due to oxidative stress. EMF increases ROS production by enhancing the activity of nicotinamide adenine dinucleotide (NADH) oxidase in the cell membrane. Further detailed studies are needed to elucidate DNA damage mechanisms and apoptotic pathways during oogenesis and spermatogenesis in germ cells exposed to EMF.

Conclusion

This paper reviews the current literature and is intended to contribute to a better understanding of the genotoxic effects of EMF emitted from mobile phones and wireless systems on the human reproductive system, especially on fertility. The current literature reveals that mobile phones can affect cellular functions via non-thermal effects (Diem et al., 2005; Hanci et al., 2013 ; Odaci et al., 2016a). Although the cellular targets of GSM-modulated EMF are associated with the cell membrane, the subject is still controversial (Eberhardt et al., 2008). Studies regarding the genotoxic effects of EMF have generally focused on DNA damage (Mortelmans and Rupa, 2004; Young, 2002; Zeiger, 2004; Panagopoulos, 2012 ; Turedi et al., 2016). Possible mechanisms are related to ROS formation due to oxidative stress (Moustafa et al., 2004; Hanukoglu et al., 2006). EMF increases ROS production by enhancing the activity of NADH oxidase in the cell membrane (Friedman et al., 2007b). In this context, EMF affected spermatozoa may have a high degree rate of infertilization. It seems that previous genomic studies do not show definitive evidence regarding EMF affected cells in the fertilization. Although we evaluated broadly the genomic effects of cell phone exposure on the reproductive system using both animal and human studies, one of the weaknesses of this work is insufficient review of human studies. This may come from limited number of EMF based human studies in the literature. Further detailed studies are needed to elucidate DNA damage mechanisms and apoptotic pathways during oogenesis and spermatogenesis in germ cells that are exposed to EMF.


https://www.ncbi.nlm.nih.gov/pubmed/29884549


--

Altun G, Deniz OG, Yurt KK, Davis D, Kaplan S. Effects of mobile phone exposure on metabolomics in the male and female reproductive systems. Environ Res. 2018 Nov;167:700-707. doi: 10.1016/j.envres.2018.02.031.
Highlights


• Long-term exposure to EMF decreases sperm motility and fertilization. • Effects of EMF emitted from mobile phones are related to protein synthesis.
• Oxidative stress based EMF exposure modulates nitric oxide level in the germ cells.
• Oxidative stress based EMF exposure inhibits antioxidant mechanisms in the germ cells.


Abstract
With current advances in technology, a number of epidemiological and experimental studies have reported a broad range of adverse effects of electromagnetic fields (EMF) on human health. Multiple cellular mechanisms have been proposed as direct causes or contributors to these biological effects. EMF-induced alterations in cellular levels can activate voltage-gated calcium channels and lead to the formation of free radicals, protein misfolding and DNA damage. Because rapidly dividing germ cells go through meiosis and mitosis, they are more sensitive to EMF in contrast to other slower-growing cell types. In this review, possible mechanistic pathways of the effects of EMF exposure on fertilization, oogenesis and spermatogenesis are discussed. In addition, the present review also evaluates metabolomic effects of GSM-modulated EMFs on the male and female reproductive systems in recent human and animal studies. In this context, experimental and epidemiological studies which examine the impact of mobile phone radiation on the processes of oogenesis and spermatogenesis are examined in line with current approaches.

Conclusion

EMF emitted by mobile phones has a number of well-documented adverse metabolomic effects on the male and female reproductive systems and can lead to infertility by increasing ROS production and reducing GSH and other antioxidants. The primary target of the EMF emitted by mobile phones may be the cell membrane (Pall in press, this volume). This then results in accelerated activity of membrane NADH oxidase and, consequently, greater rates of ROS formation that cannot be easily conjugated or detoxified. Although many studies have reported morphological and functional deteriorations in testis and ovary following EMF exposures, as well both structural and functional deficits in reproductive health, the underlying mechanisms have not been fully elucidated. To assist in further clarification of these processes and mechanisms, Table 1 summarizes key studies on the metabolomic effects of EMF on reproductive systems. Future studies will benefit greatly from standardized exposure protocols and evaluations of key metabolomic indicators.

https://www.ncbi.nlm.nih.gov/pubmed/29884548
--

Sepehrimanesh, M. & Davis, D.L. Proteomic impacts of electromagnetic fields on the male reproductive system. Comp Clin Pathol. 26(2):309-313. 2017. doi:10.1007/s00580-016-2342-x.

Abstract
The use of mobile phones and other wireless transmitting devices is increasing dramatically in developing and developed countries, as is the rate of infertility. A number of respected infertility clinics in Australia, India, USA, and Iran are reporting that those who regularly use mobile phones tend to have reduced sperm quantity and quality. Some experimental studies have found that human sperm exposed to electromagnetic fields (EMF), either simulated or from mobile phones, developed biomarkers of impaired structure and function, as well as reduced quantity. These encompass pathological, endocrine, and proteomic changes. Proteins perform a vast array of functions within living organisms, and the proteome is the entire array of proteins—the ultimate biomolecules in the pathways of DNA transcription to translation. Proteomics is the art and science of studying all proteins in cells, using different techniques. This paper reviews proteomic experimental and clinical evidence that EMF acts as a male-mediated teratogen and contributor to infertility.
Conclusions

As among the most rapidly proliferating human cells, spermatogenesis and associated activities offer an important endpoint for evaluation. More than 60 different compounds or industrial processes have been identified as increasing defects in human sperm or testicular tissue and possibly increasing the risk to offspring from male-mediated exposures. In this study, we reviewed structural and functional proteomic changes related to EMF exposure. Reported changes are categorized based on main affected tissue and also the most important adverse effects. Overall, these results demonstrate significant effects of radio frequency-modulated EMF exposure on the proteome, including both structural and functional impacts such as a decrease in the diameter and weight of the seminiferous tubules and the mean height of the germinal epithelium (Ozguner et al. 2005) and/or pathological and physiological changes in key biochemical components of the testicular tissues (Luo et al. 2013). These structural and functional changes may account for the pathological impact of EMF on the male reproductive system reported in the experimental work that we and others have conducted. While EMF is currently being used for a number of therapeutic applications (REF), the work we have reviewed here clearly indicates a range of harmful effects, especially on genital systems.

https://link.springer.com/article/10.1007/s00580-016-2342-x

--

Houston B, Nixon B, King BV, De Iuliis G, Aitken RJ. The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction. 2016 Dec;152(6):R263-R276.

Abstract

Mobile phone usage has become an integral part of our lives. However, the effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted by these devices on biological systems and specifically the reproductive systems are currently under active debate. A fundamental hindrance to the current debate is that there is no clear mechanism of how such non-ionising radiation influences biological systems. Therefore, we explored the documented impacts of RF-EMR on the male reproductive system and considered any common observations that could provide insights on a potential mechanism.

Among a total of 27 studies investigating the effects of RF-EMR on the male reproductive system, negative consequences of exposure were reported in 21. Within these 21 studies, 11 of the 15 that investigated sperm motility reported significant declines, 7 of 7 that measured the production of reactive oxygen species documented elevated levels and 4 of 5 studies that probed for DNA damage highlighted increased damage, due to RF-EMR exposure. Associated with this, RF-EMR treatment reduced antioxidant levels in 6 of 6 studies that studied this phenomenon, while consequences of RF-EMR were successfully ameliorated with the supplementation of antioxidants in all 3 studies that carried out these experiments.
In light of this, we envisage a two-step mechanism whereby RF-EMR is able to induce mitochondrial dysfunction leading to elevated ROS production.
A continued focus on research which aims to shed light on the biological effects of RF-EMR will allow us to test and assess this proposed mechanism in a variety of cell types.

https://www.ncbi.nlm.nih.gov/pubmed/27601711

Conclusion
To date, contradictory studies surrounding the impacts of RF-EMR on biological systems maintain controversy over this subject. Nevertheless, research into the biological responses stimulated by RF-EMR is particularly important given our ever-increasing use of mobile phone technology. While clinical studies are identifying possible detrimental effects of RF-EMR, it is imperative that mechanistic studies are conducted that elucidate the manner in which RF-EMR perturbs biological function, thus supplying a rational cause. A focus on the male reproductive system may experience as consequences of the personal storage of mobile devices, the unique vulnerability of the highly specialised sperm cell, and the future health burden that may be created if conception proceeds with defective, DNA-damaged spermatozoa. While this subject remains a topic of active debate, this review has considered the growing body of evidence suggesting a possible role for RF-EMR induced damage of the male germ line. In a majority of studies, this damage has been characterized by loss of sperm motility and viability as well as the induction of ROS generation and DNA damage. We have therefore given consideration to the potential mechanisms through which RF-EMR may elicit these effects on spermatozoa, which we utilized as a sensitive model system. We propose a mechanistic model in which RF-EMR exposure leads to defective mitochondrial function associated with elevated levels of ROS production and culminates in a state of oxidative stress that would account the varying phenotypes observed in response to RF-EMR exposure. With further complementary data, this model will provide new impetus to the field and stimulate research that will allow us to confidently assess the reproductive hazards of mobile phone usage.
--

Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: A systematic review and meta-analysis. Environ Int. 2014 Sep;70:106-12. doi: 10.1016/j.envint.2014.04.015.

Summary

Mobile phones are owned by most of the adult population worldwide. Radio-frequency radiation (RFR) from these devices could affect sperm development and function. Around 14% of couples in high- and middle-income countries have difficulty conceiving. Male infertility is involved approximately 40% of the time. Several countries have reported unexplained declines in semen quality. Animal research has found that RFR can affect the cell cycle of sperm, increase sperm cell death and produce histological changes in the testes. Research on humans has found that prolonged mobile phone use is associated with decreased motility, sperm concentration, morphology and viability suggesting a likely impact on fertility.
The authors of this peer-reviewed study conducted a systematic review of the research and a quantitative analysis to determine whether exposure to mobile phone radiation affects human sperm quality. Participants were from fertility clinics and research centers.
The study examined the sperm quality outcome measures most frequently used to assess fertility in clinical settings: motility (the ability to move properly through the female reproductive tract), viability (the ability to fertilize the egg), and concentration (the number of sperm in a milliliter of ejaculate).
Ten studies were examined including 1,492 human sperm samples. Exposure to mobile phones was found to be associated with a significant eight per cent average reduction in sperm motility and a significant nine per cent average reduction in sperm viability. The effects on sperm concentration were more equivocal. The results were consistent across experimental laboratory studies and correlational observational studies.

The authors concluded that the overall results suggest that mobile phone exposure negatively affects sperm quality in humans. The clinical importance of these effects in this study may be limited to subfertile men and to men at the lower-end of the normal spectrum. Open access paper: https://bit.ly/cellphonespermdamage.

--

Liu K, Li Y, Zhang G, Liu J, Cao J, Ao L, Zhang S.
Association between mobile phone use and semen quality: a systemic review and meta-analysis. Andrology. 2014 Jul;2(4):491-501.

Abstract

Possible hazardous health effects of radiofrequency electromagnetic radiations emitted from mobile phone on the reproductive system have raised public concern in recent years. This systemic review and meta-analysis was prepared following standard procedures of the Cochrane Collaboration and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement and checklist. Relevant studies published up to May 2013 were identified from five major international and Chinese literature databases: Medline/PubMed, EMBASE, CNKI, the VIP database and the Cochrane Central Register of Controlled Trials in the Cochrane Library. Eighteen studies with 3947 men and 186 rats were included in the systemic review, of which 12 studies (four human studies, four in vitro studies and four animal studies) with 1533 men and 97 rats were used in the meta-analyses. Systemic review showed that results of most of the human studies and in vitro laboratory studies indicated mobile phone use or radiofrequency exposure had negative effects on the various semen parameters studied. However, meta-analysis indicated that mobile phone use had no adverse effects on semen parameters in human studies. In the in vitro studies, meta-analysis indicated that radiofrequency radiation had detrimental effect on sperm motility and viability in vitro [pooled mean difference (MDs) (95% CI): -4.11 (-8.08, -0.13), -3.82 (-7.00, -0.65) for sperm motility and viability respectively]. As for animal studies, radiofrequency exposure had harmful effects on sperm concentration and motility [pooled MDs (95% CI): -8.75 (-17.37, -0.12), -17.72 (-32.79, -2.65) for sperm concentration and motility respectively]. Evidence from current studies suggests potential harmful effects of mobile phone use on semen parameters. A further multicentred and standardized study is needed to assess the risk of mobile phone use on the reproductive system.


https://www.ncbi.nlm.nih.gov/pubmed/24700791


60 Recent Studies (Updated: 12/16/2023)
Abeer M. Hagras, Eman A. Toraih, Manal S. Fawzy. Mobile phones electromagnetic radiation and NAD+-dependent Isocitrate Dehydrogenase as a mitochondrial marker in Asthenozoospermia. Biochimie Open. Available online July 25, 2016. https://bit.ly/2b69gh9

Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: A systematic review and meta-analysis. Environment International. 70:106-112. September 2014. https://bit.ly/cellphonespermdamage

Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008 Jan;89(1):124-8. https://www.ncbi.nlm.nih.gov/pubmed/17482179

Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, Sharma R. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92(4):1318-25. https://www.ncbi.nlm.nih.gov/pubmed/18804757

Agarwal A, Singh A, Hamada A, Kesari K. Cell phones and male infertility: a review of recent innovations in technology and consequences.Int Braz J Urol. 2011; 37(4):432-54. https://www.ncbi.nlm.nih.gov/pubmed/21888695


Akbari HA, Gaeini AA. Moderate exercise training as an effective strategy to reduce the harmful effects of cell phone radiation on Wistar rat's semen quality. Int J Radiation Research. 19(2):317-323. 2021. doi: 10.18869/acadpub.ijrr.19.2.317. https://ijrr.com/article-1-3646-en.html
Akdag MZ, Dasdag S, Canturk F, Karabulut D, Caner Y, Adalier N. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J Chem Neuroanat. 2016. https://1.usa.gov/1RjkMVb

Al-Bayyari N. The effect of cell phone usage on semen quality and fertility among Jordanian males.
Middle East Fertility Society Journal. 2017; 22(3):178-182. https://bit.ly/2pfcO6L
Al-Quzwini OF, Al-Taee, Al-Shaikh SF. Male fertility and its association with occupational and mobile phone towers hazards: An analytic study. Middle East Fertility Society Journal. 2016; 21(4):236-240. https://bit.ly/1SRUWWs

Andrašková S, Holovská K, Ševčíková Z, Andrejčáková Z, Tóth Š, Martončíková M, Račeková E, Almášiová V. The potential adverse effect of 2.45 GHz microwave radiation on the testes of prenatally exposed peripubertal male rats. Histol Histopathol. 2021 Dec 2:18402. doi: 10.14670/HH-18-402. https://pubmed.ncbi.nlm.nih.gov/34854072/

Bin-Meferij MM, El-Kott AF. The radioprotective effects of Moringa oleifera against mobile phone electromagnetic radiation-induced infertility in rats. Int J Clin Exp Med. 2015; 8(8):12487-97. https://1.usa.gov/1MURLR1

Boga A, Emre M, Sertdemir Y, Uncu İ, Binokay S, Demirhan O. Effects of GSM-like radiofrequency irradiation during the oogenesis and spermiogenesis of Xenopus laevis. Ecotoxicol Environ Saf. 2016:137-144. https://1.usa.gov/1VQh4pP

Çetkin M, Kızılkan N, Demirel C, Bozdağ Z, Erkılıç S, Erbağcı H. Quantitative changes in testicular structure and function in rat exposed to mobile phone radiation. Andrologia.
2017; 49(10). doi: 10.1111/and.12761. https://bit.ly/2jIxlyh
Chu KY, Khodamoradi K, Blachman-Braun R, et al. Effect of radiofrequency electromagnetic radiation emitted by modern cellphones on sperm motility and viability: An in vitro study. . Eur Urol Focus. 2022; S2405-4569(22)00247-4. doi:10.1016/j.euf.2022.11.004. https://pubmed.ncbi.nlm.nih.gov/36379868/

Er H, Gamze Tas G, Soygur B, Ozen S, Sati L. Acute and Chronic Exposure to 900 MHz Radio Frequency Radiation Activates p38/JNK-mediated MAPK Pathway in Rat Testis. Reprod Sci. 2022. doi: 10.1007/s43032-022-00844-y.
https://pubmed.ncbi.nlm.nih.gov/35015292/
Fatehi D, Anjomshoa M, Mohammadi M, Seify M, Rostamzadeh A. Biological effects of cell-phone radiofrequency waves exposure on fertilization in mice; an in vivo and in vitro study. Middle East Fertility Society Journal. 2017. 23(2):148-153. https://bit.ly/2iUT4Yd

Ford-Glanton BS, Melendez BA. Male Reproductive Toxicants: Electromagnetic Radiation and Heat. Reference Module in Biomedical Sciences. 2018. 4:226-228. https://doi.org/10.1016/B978-0-12-801238-3.64536-1.
Gautam R, Pardhiya S, Nirala JP, Sarsaiya P, Rajamani P. Effects of 4G mobile phone radiation exposure on reproductive, hepatic, renal, and hematological parameters of male Wistar rat. Environ Sci Pollut Res Int. 2023 Dec 16. doi: 10.1007/s11356-023-31367-x. https://pubmed.ncbi.nlm.nih.gov/38102429/
Gautam R, Singh KV, Nirala J, Murmu NN, Meena R, Rajamani P. Oxidative stress-mediated alterations on sperm parameters in male Wistar rats exposed to 3G mobile phone radiation. Andrologia. 2019; 51(3):e13201. https://bit.ly/2PT5dwg
Gao XH, Hu HR, Ma X2, Chen J, Zhang GH. [Cellphone electromagnetic radiation damages the testicular ultrastructure of male rats]. [Article in Chinese]. Zhonghua Nan Ke Xue. 2016; 22(6):491-495. https://bit.ly/2ywyJig
Gohari FA, Saranjam B, Asgari M, Omidi L, Ekrami H, Moussavi-Najarkola SA. An experimental study of the effects of combined exposure to microwave and heat on gene expression and sperm parameters in mice. J Hum Reprod Sci. 2017; 10(2):128-134. https://bit.ly/2EpfWVM

Gupta V, Srivastava R. 2.45 GHz microwave radiation induced oxidative stress: Role of inflammatory cytokines in regulating male fertility through estrogen receptor alpha in Gallus gallus domesticus. Biochem Biophys Res Commun. 2022;629:61-70. doi: 10.1016/j.bbrc.2022.09.009.
Hancı H, Kerimoğlu G, Mercantepe T, Odacı E. Changes in testicular morphology and oxidative stress biomarkers in 60-day-old Sprague Dawley rats following exposure to continuous 900-MHz electromagnetic field for 1 h a day throughout adolescence. Reprod Toxicol. 2018; 81:71-78. https://www.ncbi.nlm.nih.gov/pubmed/30009952

Hassanzadeh-Taheri M, Khalili MA, Mohebati AH, Zardast M, Hosseini M, Palmerini MG, Doostabadi MR. The detrimental effect of cell phone radiation on sperm biological characteristics in normozoospermic. Andrologia. 2021. doi: 10.1111/and.14257. https://pubmed.ncbi.nlm.nih.gov/34628682/

Hatch EE, Willis SK, Wesselink AK, Mikkelsen EM, Eisenberg ML, Sommer GJ, Sorensen HT, Rothman KJ, Wise LA. Male cellular telephone exposure, fecundability, and semen quality: results from two preconception cohort studies. Hum Reprod. 2021; 36(5):1395-1404. doi: 10.1093/humrep/deab001. https://pubmed.ncbi.nlm.nih.gov/33564831/

Houston B, Nixon B, King BV, De Iuliis G, Aitken RJ. The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction. 2016. pii: REP-16-0126. https://bit.ly/2cJJ2pE

Houston BJ, Nixon B, King BV, Aitken RJ, De Iuliis GN. Probing the origins of 1,800 MHz radio frequency electromagnetic radiation induced damage in mouse immortalized germ cells and spermatozoa in vitro. Front. Public Health. 2018 Sep 21. https://doi.org/10.3389/fpubh.2018.00270

Houston BJ, Nixon B, McEwan KE, Martin JH, King BV, Aitken RJ, De Iuliis GN. Whole-body exposures to radiofrequency-electromagnetic energy can cause DNA damage in mouse spermatozoa via an oxidative mechanism. Sci Rep. 2019 Nov 25;9(1):17478.
https://www.nature.com/articles/s41598-019-53983-9

Kamali K, Atarod M, Sarhadi S, Nikbakht J, Emami M, Maghsoudi R, Salimi H, Fallahpour B, Kamali N, Momtazan A, Ameli M. Effects of electromagnetic waves emitted from 3G+wi-fi modems on human semen analysis. Urologia. 2017 Sep 14:0.
https://www.ncbi.nlm.nih.gov/pubmed/28967061

Khoshbakht S, Motejaded F, Karimi S, Jalilvand N, Ebrahimzadeh-Bideskan A. Protective effects of selenium on electromagnetic field-induced apoptosis, aromatase P450 activity, and leptin receptor expression in rat testis. Iran J Basic Med Sci. 2021;24(3):322-330. doi: 10.22038/ijbms.2021.45358.10554. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087852/

Lewis RC, Mínguez-Alarcón L, Meeker JD, Williams PL, Mezei G, Ford JB, Hauser R; EARTH Study Team.Self-reported mobile phone use and semen parameters among men from a fertility clinic. Reprod Toxicol. 2016 Nov 9. pii: S0890-6238(16)30408-7. https://bit.ly/2fV0DuM
(Note: Authors report conflict of interest and limited statistical power to detect effects.)

Li R, Yang WQ, Chen HQ, Zhang YH. Morinda Officinalis How improves cellphone radiation-induced abnormality of LH and LHR in male rats. Article in Chinese. 2015 Sep;21(9):824-7. https://bit.ly/1Sn6Qsy

Lin YY, Wu T, Liu JY, Gao P, Li KC, Guo QY, Yuan M, Lang HY, Zeng LH, Guo GZ. 1950 MHz radio frequency electromagnetic radiation inhibits testosterone secretion of mouse Leydig cells. Int J Environ Res Public Health. 2017; 15(1). https://bit.ly/2CV3VKc

Liu Q, Si T, Xu X, Liang F, Wang L, Pan S. Electromagnetic radiation at 900 MHz induces sperm apoptosis through bcl-2, bax and caspase-3 signaling pathways in rats. Reprod Health. 2015; 12:65. https://bit.ly/2hhk9mF
Ma HR, Cao XH, Ma XL, Chen JJ, Chen JW, Yang H, Liu YX. [Protective effect of Liuweidihuang Pills against cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in rat testes]. Zhonghua Nan Ke Xue. 2015 Aug;21(8):737-41. [Article in Chinese]. https://1.usa.gov/1MtbdCM

Nakatani-Enomoto S, Okutsu M, Suzuki S et al. Effects of 1950 MHz W-CDMA-like signal on human spermatoza. Bioelectromagnetics. 11 Jun 2016. https://bit.ly/28L7nE5

Narayanan SN, Lukose ST, Arun G, Mohapatra N, Pamala J, Concessao PL, Jetti R, Kedage V, Nalini K, Bhat PG. Modulatory effect of 900 MHz radiation on biochemical and reproductive parameters in rats. Bratisl Lek Listy. 2018;119(9):581-587. https://bit.ly/2pxJx9B

Odaci E, Hanci H, Yuluğ E, Türedi S, Aliyazıcıoğlu Y, Kaya H, Çolakoğlu S.Effects of prenatal exposure to a 900 MHz electromagnetic field on 60-day-old rat testis and epididymal sperm quality. Biotech Histochem. 2015 Oct 15:1-11. https://1.usa.gov/1LB2jyE

Oh JJ, Byun SS, Lee SE, Choe G, Hong SK. Effect of Electromagnetic Waves from Mobile Phones on Spermatogenesis in the Era of 4G-LTE. Biomed Res Int. 2018 Jan 29;2018:1801798. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896334/

Oyewopo AO, Olaniyi SK, Oyewopo CI, Jimoh AT. Radiofrequency electromagnetic radiation from cell phone causes defective testicular function in male Wistar rats. Andrologia. 2017 Mar 6. https://bit.ly/2lZ1rP1

Pandey N, Giri S, Das S, Upadhaya P. Radiofrequency radiation (900 MHz)-induced DNA damage and cell cycle arrest in testicular germ cells in swiss albino mice. Toxicol Ind Health. 2016 Oct 13. https://bit.ly/2e1OscT

Parsanezhad M, Mortazavi SMJ, Doohandeh T, Namavar Jahromi B, Mozdarani , Zarei A, Davari M, Amjadi S, Soleimani A, Haghani M. Exposure to radiofrequency radiation emitted from mobile phone jammers adversely affects the quality of human sperm. International Journal of Radiation Research. 15(1). Jan 2017. https://bit.ly/2nyVhck

Rahban R, Senn A, Nef S, Rӧӧsli M. Association between self-reported mobile phone use and the semen quality of young men. Fertility and Sterility, 2023. https://www.fertstert.org/article/S0015-0282(23)01875-7/fulltext

Radwan, M, Jurewicz, J, Merecz-Kot, D, Sobala, W, Radwan, P, Bochenek, M, Hanke, W. Sperm DNA damage—the effect of stress and everyday life factors. International Journal of Impotence Research. 14 April 2016. https://bit.ly/1W0igXi

Saygin M, Asci H, Ozmen O, Cankara FN, Dincoglu D, Ilhan I. Impact of 2.45 GHz microwave radiation on the testicular inflammatory pathway biomarkers in young rats: The role of gallic acid. Environ Toxicol. 2015 Aug 13. doi: 10.1002/tox.22179. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/26268881?dopt=Abstract

Schauer I, Mohamad Al-Ali B. Combined effects of varicocele and cell phones on semen and hormonal parameters. Wien Klin Wochenschr. 2017 Oct 13. doi: 10.1007/s00508-017-1277-9. https://www.ncbi.nlm.nih.gov/pubmed/29030685

Sepehrimanesh, M. & Davis, D.L. Proteomic impacts of electromagnetic fields on the male reproductive system. Comp Clin Pathol (2016). doi:10.1007/s00580-016-2342-x. https://bit.ly/2dTj1oT

Sepehrimanesh M, Kazemipour N, Saeb M, Nazifi S, Davis DL.Proteomic analysis of continuous 900-MHz radiofrequency electromagnetic field exposure in testicular tissue: a rat model of human cell phone exposure. Environ Sci Pollut Res Int. 2017 Apr 10. doi: 10.1007/s11356-017-8882-z. https://www.ncbi.nlm.nih.gov/pubmed/28397118

Shokri M, Shamsaei ME, Malekshah AK, Amiri FT. The protective effect of melatonin on radiofrequency electromagnetic fields of mobile phone-induced testicular damage in an experimental mouse model. Andrologia. 2020 Oct 11;e13834. doi: 10.1111/and.13834.
https://pubmed.ncbi.nlm.nih.gov/33040351/
Sokolovic D, Djordjevic B, Kocic G, Stoimenov TJ, Stanojkovic Z, Sokolovic DM, et al. The Effects of Melatonin on Oxidative Stress Parameters and DNA Fragmentation in Testicular Tissue of Rats Exposed to Microwave Radiation. Adv Clin Exp Med. 2015 May-Jun;24(3):429-36. doi: 10.17219/acem/43888. https://1.usa.gov/1hJdzAz

Solek P, Majchrowicz L, Bloniarz D, Krotoszynska E, Koziorowski M. Pulsed or continuous electromagnetic field induce p53/p21-mediated apoptotic signaling pathway in mouse spermatogenic cells in vitro and thus may affect male fertility. Toxicology. 2017 Mar 16. pii: S0300-483X(17)30092-6. https://bit.ly/2ntlHvN


Wang D, Li B, Liu Y, Ma YF, Chen SQ, Sun HJ, Dong J, Ma XH, Zhou J, Wang XH. [Impact of mobile phone radiation on the quality and DNA methylation of human sperm in vitro]. [Article in Chinese]. Zhonghua Nan Ke Xue. 2015 Jun;21(6):515-520. https://1.usa.gov/1OTD4tG
Wessapan T, Rattanadecho P. Temperature induced in the testicular and related tissues due to electromagnetic fields exposure at 900 MHz and 1800 MHz. International Journal of Heat and Mass Transfer, 102:1130-1140. 2016. https://bit.ly/2bh0xtd

Yahyazadeh A, Altunkaynak BZ, Kaplan S. Biochemical, immunohistochemical and morphometrical investigation of the effect of thymoquinone on the rat testis following exposure to a 900-MHz electromagnetic field. Acta Histochem. 2019 Nov 26:151467.
https://www.ncbi.nlm.nih.gov/pubmed/31784235
Yildirim et al. What is harmful for male fertility, cell phone or the wireless internet? Kaohsiung Journal of Medical Sciences. Published online Jul 26, 2015. Abstract and summary: https://www.saferemr.com/2013/03/opposition-to-los-angeles-public.html.

Yu G, Tang Z, Chen H, et al. Long-term exposure to 4G smartphone radiofrequency electromagnetic radiation diminished male reproductive potential by directly disrupting Spock3-MMP2-BTB axis in the testes of adult rats. Sci Total Environ. 2019 Aug 31;698:133860. https://www.ncbi.nlm.nih.gov/pubmed/31514029

Zang Z, Ji S, Huang S, Jiang M, Fang Y. (2016) Impact of Cellphone Radiation on Sexual Behavior and Serum Concentration of Testosterone and LH in Male Mice. Occupational Diseases and Environmental Medicine, 4(3):56-62. https://bit.ly/2bgF6Y4

Zhang G, Yan H, Chen Q, Liu K, Ling X, Sun L, Zhou N, Wang Z, Zou P, Wang X, Tan L, Cui Z, Zhou Z, Liu J, Ao L, Cao J. Effects of cell phone use on semen parameters: Results from the MARHCS cohort study in Chongqing, China. Environ Int. 2016 Mar 4;91:116-121. https://1.usa.gov/1pvU2YV

Zhang S, Mo F, Chang Y, Wu S, Ma Q, Jin F, Xing L. Effects of mobile phone use on semen parameters: a cross-sectional study of 1634 men in China. Reprod Fertil Dev. 2022 Apr 19. https://bit.ly/3K0xwAf

Zilberlicht et al. Habits of cell phone usage and sperm quality – does it warrant attention? Reproductive BioMedicine Online. 31(3):421-426. 2015. https://www.ncbi.nlm.nih.gov/pubmed/26206279
Electromagnetic Radiation Safety
29.3.2024 20:35

Featured News Stories


Devra Davis. Why did NIH abruptly halt research on the harms of cell phone radiation? The Hill, Feb 1, 2024.
"In a shocking reversal, the National Toxicology Program (NTP) of the National Institute of Environmental Health Sciences has quietly disclosed that it will stop studying the biological or environmental impacts of cell phone radiofrequency radiation."

Louis Slesin. Paul Brodeur: The Original Microwave Pioneer. Microwave News, Oct 9, 2023.
"Brodeur got the facts right. Electromagnetic radiation can do more than simple heating. This has been known—but denied—for decades. As for links to cancer, they have grown stronger over the years .... he was right about a cover-up. It continues today."
Peter Elkind. What to Know About Cellphone Radiation. ProPublica, Jan 4, 2023. ProPublica recently examined how the federal government, based on quarter-century-old standards, denies that cellphones pose any risks. This guide answers some of the most common questions people ask about cellphone radiation.
Peter Elkind. How the FCC Shields Cellphone Companies From Safety Concerns. ProPublica, Nov 10, 2022.
A major exposé of the FCC's negligence and complicity with the telecom industry .... "The wireless industry is rolling out thousands of new transmitters amid a growing body of research that calls cellphone safety into question. Federal regulators say there's nothing to worry about — even as they rely on standards established in 1996."
Ahmad El Hajj. Will 5G Kill Me? When Telecom Politics Become a Deadly Sin. Inside Telecom (International Telecoms Business Magazine), May 4, 2022.
"What is the safe exposure time to these radiations? What is the safe distance between a person and a transmitting antenna? What are safe transmission power levels? Why haven't safety guidelines been updated for some time? Why are the opinions of some scientists been disregarded? Can telecom tower radiations clearly cause cancer or other devastating effects?"
Lyle Laver. Raise the Roof. The National Business Post, Mar 29, 2022.
"It is great to have immediate access in our mobile world, but at what cost? Should we "raise the roof" on this issue and 'put it up to 11?' Certainly, that is what the WIA and the FCC are doing right now; and the longer we wait, the more we will see this infrastructure devalue our neighborhoods, homes and health. These electromagnetic fields will only grow in strength and frequency."
Barbara Koeppel. Federal Court Instructs FCC to Review Electromagnetic Radiation Standards. The Washington Spectator, Mar 9, 2022.
"For 25 years ... the Federal Communications Commission has refused to revise the regulations it set in 1996 that address what level of radiation from cell phones should be considered safe."
Anne Brice. Moskowitz: Cellphone radiation is harmful, but few want to believe it. Berkeley News, July 1, 2021.
" there are strong parallels between what the telecom industry has done and what the tobacco industry has done, in terms of marketing and controlling messaging to the public."

Daniel Forbes. Oregon Health Authority Condemned by Scientists For Scrubbing Report on Wireless Hazards in Schools. The Washington Spectator, May 24, 2021.
Oregon's public health agency issued a shoddy, biased report on the potential harm to 600,000 schoolkids from wireless devices in classrooms.
Dariusz Leszczynski. 5G is testing the limits of trust. Medium, Apr 13, 2021.

"ICNIRP's guidelines, in addition to being set to prevent only thermal effects, are also based only on short-term, acute exposures ... there is very little research on long-term chronic exposures... applying ICNIRP guidelines to long-term exposures is based on an assumption of safety and not on the scientific evidence."

Devra Davis. Why I'm challenging the FCC about antiquated safety standards for wireless devices. The Washington Times, Feb 23, 2021.

"In 1996, Congress decided the FCC should have the primary responsibility for protecting the public from radiation exposure even though it has no health expertise and typically sides with phone companies rather than citizens. That was a mistake..."
Katie Alvord. Is Wireless Technology an Environmental Health Risk? Society of Environmental Journalists. Jan 6, 2021.
"Those concerned say thousands of studies conclude that RFR can hurt us at levels well below those microwave ovens used for cooking."
Barbara Koeppel. Wireless Hazards. The Washington Spectator, Dec 28, 2020.
"If you think your cellphone is safe, have you considered why you believe that? Is it a fact or is it based on carefully crafted messages that you've read or heard?"
Joel Moskowitz. Regulators Steamroll Health Concerns as the Global Economy Embraces 5G. The Washington Spectator. 46(9):6, September 2020. ISSN 0887-428X.

"The FCC, however, has been "short on science" for more than two decades...."

Tom Butler. On the Clear Evidence of the Risks to Children from Non-Ionizing Radio Frequency Radiation: The Case of Digital Technologies in the Home, Classroom and Society. Cork, Ireland: University College Cork. 33 pp.

Christopher Ketcham. Is 5G Going to Kill Us All? The New Republic, May 8, 2020.

"A new generation of superfast wireless internet is coming soon. But no one can say for sure if it's safe."
Louis Slesin. The Lies Must Stop Disband ICNIRP: Facts Matter, Now More Than Ever. Microwave News, Apr 9, 2020.

"The public has been fed lies and half-truths about the health effects of RF/microwave radiation for as long as I have been involved, since the 1970s."

International EMF Alliance. Misconception of 5G. Unpublished letter submitted to Scientific American, Nov 7, 2019.

This letter rebuts David Robert Grimes' article that attacks, "We Have No Reason to Believe 5G is Safe." The Grimes article has been removed from the Scientific American website.

Louis Slesin. Will WHO Kick Its ICNIRP Habit? Non-Thermal Effects Hang in the Balance. Microwave News, Nov 4, 2019.

After 8 years of work, the WHO is reopening its review of RF radiation health effects. This investigative report exposes ties between the WHO EMF Project, the ICNIRP, and the telecom industry.

Joel Moskowitz. We Have No Reason to Believe 5G is Safe. Scientific American, Oct 17, 2019.

"we should support the recommendations of the 250 scientists and medical doctors who signed the 5G Appeal that calls for an immediate moratorium on the deployment of 5G and demand that our government fund the research needed to adopt biologically based exposure limits that protect our health and safety."

Simon Hill. Is cell phone radiation actually dangerous? We asked some experts. Digital Trends, Sep 25, 2019.

"The ... standards that are in place, which haven't changed since 1996, were set based on when animal behavior changed ... If we can't draw conclusions about the NTP study, why is this earlier animal research still the basis of our safety limits?"

Joe Mahr. Lawsuit filed against Apple, Samsung after Chicago Tribune tests cellphones for radiofrequency radiation. Chicago Tribune, Aug 29, 2019.

Sam Roe. We tested popular cellphones for radiofrequency radiation. Now the FCC is investigating. Chicago Tribune, Aug 21, 2019.

The paper's year-long investigation found some of the most popular cell phones, including Apple iPhones, emit radiation that exceeds government (FCC) safety limits

Sam Roe. Testing cellphones for radiofrequency radiation: How we did it. Chicago Tribune, Aug 21, 2019.

Joel Moskowitz. 5G Health Risks. BBC Radio 5, May 30, 2019 (9 minute news segment).

The deployment of 5G in the United Kingdom today has generated great concern among the public. This is a brief overview of the health risks from exposure to 5G millimeter waves.

Devra Davis. 5G: The Unreported Global Threat. Medium, May 18, 2019.

Major mainstream newspapers commonly ignore the substantial body of science pinpointing wireless radiation and 5G hazards detailed in journalistic investigations.
Investigate Europe. Mobile phones and health: Is 5G being rolled out too fast? Computer Weekly, April, 2019.

Countries are deploying 5G at breakneck speed to gain a competitive edge, but scientists have concerns about effects on public health and are calling for a precautionary approach.
Markham Heid. Are AirPods and Other Bluetooth Headphones Safe? Medium, Mar 7, 2019.
Numerous scientific publications have shown that EMF affects living organisms at levels well below international and national guidelines including cancer, neurological disorders, and DNA damage.
Investigate Europe. The 5G mass experiment. Jan 13, 2019.

In a series of news stories, a team of investigative journalists examines the risks of 5G deployment.
"
it could also harm your health. Europe's governments ignore the danger."

Hiawatha Bray. Could your cellphone's electromagnetic field make you sick? Boston Globe, Jan 17, 2019.

The Massachusetts Department of Public Health may be withholding information about possible health risks posed by cellphones and other wireless technologies.
Ronald Melnick, Ph.D. There's a clear cell phone-cancer link, but FDA is downplaying it. The Hill, Nov 13, 2018.

Dr. Melnick was the senior toxicologist who led the design of the National Toxicology Program cell phone radiation studies.

Joyce Nelson. 5G Corporate Grail: Smart cities/dumb people? Watershed Sentinel, Nov 5, 2018.

"There's a lot of hype about 5G, the fifth-generation wireless technology that is being rolled out in various "5G test beds" in major cities ...But it's hard to see why we should be excited."

Annelie Fitzgerald. Mobile Phone Cover-up? Gov't advisory body disbanded – inaccurate and misleading conclusions remain. TruePublica (UK), Oct 17, 2018.
UK disbanded advisory group on non-ionizing radiation (AGNIR) after group issued inaccurate assessment of wireless radiation science subject to conflicts of interest. Public Heath England still relies on AGNIR report.
Martin Röösli. Mobile phone radiation may affect memory performance in adolescents. Medical Xpress. July 20, 2018.

Radio frequency radiation may have adverse effects on memory performance of specific brain regions exposed during mobile phone use.


Ronnie Cohen. Do cellphones cause cancer? Government study reveals 'stunningly important findings. Newsweek, July 19, 2018.

Current cellphone safety regulations are based on a premise that is now arguably false: that cellphone radiation can cause harm only by heating tissue.
Mark Hertsgaard and Mark Dowie. The inconvenient truth about cancer and mobile phones.The Guardian, July 14, 2018.

We dismiss claims about mobiles being bad for our health – but is that because studies showing a link to cancer have been cast into doubt by the industry?

Reynard Loki. Our cellphone addiction is turning wireless tech into an invisible weapon that's destroying wildlife. Salon, July 14, 2018.

Electromagnetic radiation from Wi-Fi and cell towers poses a "credible risk" to birds, mammals, insects and plants
Lynne Peeples. Should cell phone providers warn customers of health risks? Berkeley says yes. McClatchy News Washington Bureau, July 11, 2018.

Although the scientific community has not reached consensus, the California health department said research indicates long-term, extensive cellphone use may affect health.

Lynne Peeples. Wireless industry using First Amendment as a cudgel in its battle against safety warnings. Fair Warning, July 11, 2018.

Complete version of the article. News websites published the McClatchy version.

Louis Slesin. "'Clear evidence' of cell phone cancer risk, say leading pathologists." Microwave News, April 9, 2018.

Why the peer review panel and NTP interpreted the same animal data differently.

Mark Hertsgaard and Mark Dowie. "How big wireless made us think that cell phones are safe: A special investigation." The Nation, March 29, 2018.

The disinformation campaign—and massive radiation increase—behind the 5G rollout.
Timothy Schoechle. "Reinventing Wires: The Future of Landlines and Networks." National Institute for Science, Law & Public Policy. 2018.
The U.S. should invest in hard-wired telecom infrastructure to support economic growth, bridge the digital divide & diminish risks to security, privacy, public health & the environment.

Electromagnetic Radiation Safety
1.2.2024 20:37

Brain Tumor Rates Are Rising in the US: The Role of Cell Phone & Cordless Phone Use


Head and neck tumors associated with cell phone use have increased in the U.S. since 2000
Since the year 2000, the U.S. has experienced significant increases in the age-adjusted incidence rates of four head and neck tumors associated with cell phone use, including the most serious malignant brain tumor (glioblastoma), a non-malignant tumor on the outer covering of the brain (meningioma) and cancers of the salivary and thyroid glands. Among youth less than 20 years of age, nonmalignant meningioma and thyroid cancer significantly increased.
Whereas the size of the population in the U.S. increased 16% between 2000 and 2019, the number of cases reported in the National Cancer Institute's SEER 22 registry for these four tumors had a greater increase: a 53% increase for glioblastoma, 124% for non-malignant meningioma, 52% for salivary gland cancer, and 132% for thyroid cancer.
The increase in age-adjusted incidence rates for these four tumors is likely attributable to the chronic effects of mobile phone use in addition to other factors including improvements in screening.
The tumor incidence rate data below are from the SEER 22 Registry which covers 48% of the total U.S. population. The data were age-adjusted to the population in the year 2000 so observed differences over time are not affected by changes in the age composition of the population.
Glioblastoma
Glioblastoma is the most common malignant brain and central nervous system tumor (i.e., cancer) with a median survival rate of only 8 months.

In the U.S., although the age-adjusted incidence rate of all brain and nervous system cancers significantly decreased by 0.4% per year from 2009 to 2019, the incidence of glioblastoma significantly increased overall by 1.2% per year from 2000 to 2004.
Moreover, from 2000 to 2019, glioblastoma incidence increased significantly in three age groups--by 2.3% per year for children less than 15 years of age, by 1.3% per year for young adults 15 to 39 years of age, and by 0.3% per year for adults 65 to 74 years of age. Among adults 75 and older, glioblastoma significantly increased by 1.3% per year from 2000-2009.

https://seer.cancer.gov/statistics-network/explorer/application.html?site=661&data_type=1&graph_type=2&compareBy=age_range&chk_age_range_1=1&chk_age_range_16=16&chk_age_range_62=62&chk_age_range_122=122&chk_age_range_160=160&chk_age_range_166=166&chk_age_range_15=15&hdn_rate_type=1&sex=1&race=1&stage=101&advopt_precision=2&advopt_show_ci=on&hdn_view=1&advopt_show_apc=on&advopt_display=2#resultsRegion1

Nonmalignant Meningioma
In the U.S. nonmalignant meningioma is the most common brain tumor. The incidence of this tumor was not reported to the SEER registry prior to 2004.

The overall age-adjusted incidence of nonmalignant meningioma of the brain and nervous system significantly increased 70% in the U.S. from 2004 (6.46 per 100,000) to 2019 (11.01 per 100,000). From 2004 to 2008, the increase was 12.3% per year, and from 2008 to 2019, the increase was 2.1% per year.

Among youth less than 20 years of age the incidence of nonmalignant meningioma significantly increased by 2.8% per year from 2004 to 2019.


https://seer.cancer.gov/statistics-network/explorer/application.html?site=501&data_type=1&graph_type=2&compareBy=age_range&chk_age_range_1=1&chk_age_range_16=16&chk_age_range_62=62&chk_age_range_122=122&chk_age_range_160=160&chk_age_range_166=166&chk_age_range_15=15&hdn_rate_type=1&sex=1&race=1&hdn_stage=101&advopt_precision=2&advopt_show_ci=on&hdn_view=1&advopt_show_apc=on&advopt_display=2#resultsRegion1

Thyroid Cancer
The age-adjusted incidence rate of thyroid cancer significantly increased overall in the U.S. from 2000 to 2009 by 7.1% per year and from 2009 to 2014 by 2.3% per year.

Among youth less than 20 years of age thyroid cancer incidence significantly increased by 4.5% per year from 2000 to 2019.
https://seer.cancer.gov/statistics-network/explorer/application.html?site=80&data_type=1&graph_type=2&compareBy=age_range&chk_age_range_1=1&chk_age_range_16=16&chk_age_range_62=62&chk_age_range_122=122&chk_age_range_160=160&chk_age_range_166=166&chk_age_range_15=15&rate_type=2&sex=1&race=1&stage=101&advopt_precision=2&advopt_show_ci=on&advopt_show_count=on&hdn_view=1&advopt_show_apc=on&advopt_display=2

Salivary Gland Cancer
The age-adjusted incidence rate of salivary gland cancer significantly increased overall in the U.S. by 0.6% per year from 2000 to 2019.

https://seer.cancer.gov/statistics-network/explorer/application.html?site=7&data_type=1&graph_type=2&compareBy=age_range&chk_age_range_1=1&chk_age_range_16=16&chk_age_range_62=62&chk_age_range_122=122&chk_age_range_160=160&chk_age_range_166=166&chk_age_range_15=15&rate_type=2&sex=1&race=1&stage=101&advopt_precision=2&advopt_show_ci=on&advopt_show_count=on&hdn_view=1&advopt_show_apc=on&advopt_display=2#resultsRegion1

Reference: SEER*Explorer: An interactive website for SEER cancer statistics [Internet]. Surveillance Research Program, National Cancer Institute; 2023 Apr 19. [updated: 2023 Nov 16; cited 2024 Jan 9]. Available from: https://seer.cancer.gov/statistics-network/explorer/. Data source(s): SEER Incidence Data, November 2022 Submission (1975-2020), SEER 22 registries.

--
July 1, 2021
Hardell and Carlberg (2015) reported that brain tumor rates have been increasing in Sweden based upon the Swedish National Inpatient Registry data. Hardell and Carlberg (2017) reported that brain tumors of unknown type increased from 2007-2015, especially in the age group 20-39 years of age. According to the authors, "This may be explained by higher risk for brain tumor in subjects with first use of a wireless phone before the age of 20 years taking a reasonable latency period."

What about brain tumor rates in the United States?

The incidence of glioma, the most common malignant brain tumor, has increased in the United States, although not across-the-board. The National Cancer Institute reported that glioma incidence in the frontal lobe increased among young adults 20-29 years of age (Inskip et al., 2010).

The incidence of glioblastoma multiforme (GBM), which accounts for about half of all gliomas, increased in the frontal and temporal lobes, and in the cerebellum among adults in the U.S. from 1992-2006 (Zada et al., 2012).

The Cancer Prevention Institute of California (2016) in their annual report about cancer incidence in the greater San Francisco Bay Area noted that the incidence of GBM increased from 1988-2013 among non-Hispanic white male (0.7% per year) and female adults (1.1% per year) and remained stable among other race/ethnic groups.

Using national tumor registry data, a recent study found that the overall incidence of meningioma, the most common non-malignant brain tumor, has increased in the United States in recent years (Dolecek et al., 2015). The age-adjusted incidence rate for meningioma increased from about 6.3 per 100,000 in 2004 to about 7.8 per 100,000 in 2009. Brain tumor incidence increased for all age groups except youth (0-19 years of age).

Risk of glioma from cell phone and cordless phone use

Three independent, case-control studies have found that long-term use of cell phones increases risk for glioma (Interphone Study Group, 2010; Hardell et al, 2013; Coureau et al, 2014). The only research to examine cordless phone use also found increased glioma risk with long-term use (Hardell et al, 2013). These studies include data from 13 nations: Australia, Canada, Denmark, Finland, France, Germany, Israel, Italy, Japan, New Zealand, Norway, Sweden and the UK. After ten years of wireless phone use (i.e., cell phone plus cordless phone use), the risk of glioma doubles and after 25 years, the risk triples (Hardell et al, 2013).

Although the U.S. does not conduct research on wireless phone use and tumor risk in humans and does not participate in the international studies, there is no reason to believe that Americans are immune to these potential effects of wireless phone use.


In sum, the peer-reviewed research on brain tumor risk and wireless phone use strongly suggests that we should exercise precaution and keep cell phones and cordless phones away from our heads. Moreover, the research calls into question the adequacy of national and international guidelines that limit the amount of microwave radiation emitted by cell phones and cordless phones.

Risk of meningioma from cell phone and cordless phone use

A study by Carlberg and Hardell (2015) adds to the growing body of evidence that heavy use of wireless phones (i.e., cell phones and cordless phones) is associated with increased risk of meningioma in Sweden. Heavy cordless phone users (defined as more than 1,436 hours of lifetime use) had a 1.7-fold greater risk of meningioma (OR = 1.7; 95% CI = 1.3-2.2). The heaviest cordless phone users (defined as more than 3,358 hours of lifetime use) had a two-fold greater risk of meningioma (OR = 2.0; 95% CI = 1.4 - 2.8). The heaviest cell phone users had a 1.5-fold greater risk of meningioma (OR = 1.5, 95% CI = 0.99 - 2.1).

Two earlier case-control studies conducted in other nations have found significant evidence of increased risk for meningioma among heavy cell phone users:

(1) In France, Coureau et al. (2014) found a two and a half-fold greater risk of meningioma for heavy cell phone users (defined as 896 or more hours of lifetime use) (OR = 2.57; 95% CI = 1.02 to 6.44).

(2) In Australia, Canada, France, Israel and New Zealand, Cardis et al. (2011) found a two-fold greater risk of meningioma for heavy cell phone users (defined as 3,124 or more hours of lifetime use) (OR = 2.01; 95% CI = 1.03 to 2.93).

The two prior studies did not assess cordless phone use so it's likely they underestimate the meningioma risk from wireless phone use.

Thus, three independent, case-control studies have found that wireless phone use is a risk factor for meningioma.

Related Posts:
New review study finds that heavier cell phone use increases tumor risk
Expert report by former U.S. govt. official: High probability RF radiation causes brain tumors
Cell phone and cordless phone use causes brain cancer: New review

Long-Term Cell Phone Use Increases Brain Tumor Risk


Recent Research Studies & Reports
(updated August 1, 2021)

Annual Report to the Nation on the Status of Cancer, Part 1: National Cancer Statistics
Islami F, Ward EM, Sung H, Cronin KA, Tangka FKL, Sherman RL, Zhao J, Anderson RN, Henley SJ, Yabroff KR, Jemal A, Benard VB. Annual Report to the Nation on the Status of Cancer, Part 1: National Cancer Statistics. J Natl Cancer Inst. 2021 Jul 8:djab131. doi: 10.1093/jnci/djab131. Epub ahead of print. PMID: 34240195.
Abstract

Background: The American Cancer Society, Centers for Disease Control and Prevention, National Cancer Institute, and North American Association of Central Cancer Registries collaborate to provide annual updates on cancer incidence and mortality and trends by cancer type, sex, age group, and racial/ethnic group in the United States. In this report, we also examine trends in stage-specific survival for melanoma of the skin (melanoma).

Methods: Incidence data for all cancers from 2001 through 2017 and survival data for melanoma cases diagnosed during 2001-2014 and followed up through 2016 were obtained from the Centers for Disease Control and Prevention- and National Cancer Institute-funded population-based cancer registry programs compiled by the North American Association of Central Cancer Registries. Data on cancer deaths from 2001 through 2018 were obtained from the National Center for Health Statistics' National Vital Statistics System. Trends in age-standardized incidence and death rates and 2-year relative survival were estimated by joinpoint analysis, and trends in incidence and mortality were expressed as average annual percent change (AAPC) during the most recent 5 years (2013-2017 for incidence and 2014-2018 for mortality).

Results: Overall cancer incidence rates (per 100,000 population) for all ages during 2013-2017 were 487.4 among males and 422.4 among females. During this period, incidence rates remained stable among males but slightly increased in females (AAPC = 0.2%; 95% confidence interval [CI] = 0.1% to 0.2%). Overall cancer death rates (per 100,000 population) during 2014-2018 were 185.5 among males and 133.5 among females. During this period, overall death rates decreased in both males (AAPC = -2.2%; 95% CI = -2.5% to - 1.9%) and females (AAPC = -1.7%; 95% CI = -2.1% to - 1.4%); death rates decreased for 11 of the 19 most common cancers among males and for 14 of the 20 most common cancers among females, but increased for 5 cancers in each sex. During 2014-2018, the declines in death rates accelerated for lung cancer and melanoma, slowed down for colorectal and female breast cancers, and leveled off for prostate cancer. Among children younger than age 15 years and adolescents and young adults aged 15-39 years, cancer death rates continued to decrease in contrast to the increasing incidence rates. Two-year relative survival for distant-stage skin melanoma was stable for those diagnosed during 2001-2009 but increased by 3.1% (95% CI = 2.8% to 3.5%) per year for those diagnosed during 2009-2014, with comparable trends among males and females.

Conclusions: Cancer death rates in the United States continue to decline overall and for many cancer types, with the decline accelerated for lung cancer and melanoma. For several other major cancers, however, death rates continue to increase or previous declines in rates have slowed or ceased. Moreover, overall incidence rates continue to increase among females, children, and adolescents and young adults. These findings inform efforts related to prevention, early detection, and treatment and for broad and equitable implementation of effective interventions, especially among under-resourced populations.

https://pubmed.ncbi.nlm.nih.gov/34240195/

Excerpts
"Moreover, overall incidence rates continue to increase among females, children, and adolescents and young adults."

Overall:
"During 2013-2017, incidence rates among males increased for 5 of the 18 most common cancers: melanoma, kidney and renal pelvis (kidney), pancreas, oral cavity and pharynx, and testis; were stable for 7 cancers: liver and intrahepatic bile duct (liver), myeloma, prostate, esophagus, leukemia, non-Hodgkin lymphoma (NHL), and thyroid; and decreased for 6 cancers: lung and bronchus (lung), larynx, urinary bladder (bladder), stomach, colon and rectum (colorectum); and brain and other nervous systems (ONS) (Figure 3, Table 1)."
"Among females, incidence rates increased during 2013-2017 for 8 of the 18 most common cancers: liver, melanoma, kidney, myeloma, corpus and uterus, not otherwise specified (uterus), pancreas, breast, and oral cavity and pharynx; were stable for 4 cancers: cervix, leukemia, stomach, and NHL; and decreased for 6 cancers: thyroid, ovary, lung, colorectum, bladder, and brain and ONS (Figure 3, Table 1). However, liver cancer incidence rates among females stabilized during 2014-2017 (Table 2)."
Children aged 0-14 years:

"Among children aged 0-14 years, the incidence rate for all cancers combined was 16.8 cases per 100,000 standard population, ranging from 12.6 among AI/AN children to 17.8 among White children (Table 1). Overall cancer incidence rates increased during 2013-2017 (AAPC = 0.7%; 95% CI = 0.5% to 0.9%). The increase occurred in all racial/ethnic groups except among AI/AN children, in whom rates were stable (Table 1). The most common cancer types included leukemia (5.2 cases per 100,000 standard population), brain and ONS (3.8), and lymphoma (1.6), 15 with increasing trends of 0.7%-0.8% per year on average for each of these cancers during 2001-2017 (Table 2). Leukemia rates showed the most variability among racial/ethnic groups, ranging from 3.2 cases per 100,000 standard population among Black children to 6.2 among Hispanic children (Table 1). Leukemia incidence rates increased during the most recent 5 years (2013-2017) among White, Black, AI/AN, and Hispanic children but were stable among API children."

Adolescents and young adults [AYA] aged 15-39 years:
"Overall cancer incidence rates among AYA increased during 2001-2017 (APC = 0.9%; 95% CI = 0.8% to 1.0%), as did incidence rates of testicular cancer, whereas rates decreased for lymphoma and melanoma (Table 2). There were variations in trends during 2001-2017 for cancers of the colorectum, female breast, and thyroid. The annual percent increase in AYA colorectal cancer incidence rates almost tripled from 1.8% during 2001-2011 to 5.5% during 2011-2017. AYA female breast cancer incidence rates were stable during 2001-2010 then increased 1.1% per year during 2010-2017, whereas earlier increasing trends for AYA thyroid cancer stabilized during 2015-2017."

Thyroid cancer incidence trend:
"Last year's report found that 5-year incidence trends for thyroid cancer had stabilized among both males and females after increasing for several decades. This year, for the first time, 5-year incidence rates are statistically significantly decreasing 2.0% per year among women of all racial/ethnic groups. Thyroid cancer incidence rates among AYA, which had been increasing, have now stabilized. However, incidence rates of advanced-stage thyroid cancer (81) and larger papillary thyroid cancers of classical variant (size ≥1 cm) have slightly increased in recent years (82), likely due to the obesity epidemic. As discussed in last year's report, declines in overall thyroid cancer incidence are likely attributable to changes in diagnostic practices for low risk tumors (19). A small proportion of the decline during 2015-2017 has been attributed to diagnostic coding changes for follicular variant of papillary thyroid carcinoma (82)."
Limitation:
"... although temporal trends for some cancer types may vary by histological or molecular subtype (50, 51, 99), we did not examine these patterns as they are beyond the scope of this report.

--
CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017

Quinn T Ostrom, Nirav Patil, Gino Cioffi, Kristin Waite, Carol Kruchko, Jill S Barnholtz-Sloan. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-Oncology, Volume 22, Issue Supplement_1, October 2020, Pages iv1–iv96, https://doi.org/10.1093/neuonc/noaa200
A correction has been published: Neuro-Oncology, noaa269, https://doi.org/10.1093/neuonc/noaa269
Abstract

The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control (CDC) and National Cancer Institute (NCI), is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the United States (US) and represents the entire US population. This report contains the most up-to-date population-based data on primary brain tumors (malignant and non-malignant) and supersedes all previous CBTRUS reports in terms of completeness and accuracy. All rates (incidence and mortality) are age-adjusted using the 2000 US standard population and presented per 100,000 population. The average annual age-adjusted incidence rate (AAAIR) of all malignant and non-malignant brain and other CNS tumors was 23.79 (Malignant AAAIR=7.08, non-Malignant AAAIR=16.71). This rate was higher in females compared to males (26.31 versus 21.09), Blacks compared to Whites (23.88 versus 23.83), and non-Hispanics compared to Hispanics (24.23 versus 21.48). The most commonly occurring malignant brain and other CNS tumor was glioblastoma (14.5% of all tumors), and the most common non-malignant tumor was meningioma (38.3% of all tumors). Glioblastoma was more common in males, and meningioma was more common in females. In children and adolescents (age 0-19 years), the incidence rate of all primary brain and other CNS tumors was 6.14. An estimated 83,830 new cases of malignant and non-malignant brain and other CNS tumors are expected to be diagnosed in the US in 2020 (24,970 malignant and 58,860 non-malignant). There were 81,246 deaths attributed to malignant brain and other CNS tumors between 2013 and 2017. This represents an average annual mortality rate of 4.42. The 5-year relative survival rate following diagnosis of a malignant brain and other CNS tumor was 36.0% and for a non-malignant brain and other CNS tumor was 91.7%.

Executive Summary

The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control (CDC) and the National Cancer Institute (NCI), is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the United States (US) and represents the entire US population. The CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017 contains the most up-to-date population-based data on primary brain tumors available through the surveillance system in the US and supersedes all previous CBTRUS reports in terms of completeness and accuracy, thereby providing a current comprehensive source for the descriptive epidemiology of these tumors. All rates are age-adjusted using the 2000 US standard population and presented per 100,000 population.

Incidence
  • The average annual age-adjusted incidence rate of all primary malignant and non-malignant brain and other CNS tumors for the years 2013-2017 was 23.79 per 100,000.

  • This rate was higher in females compared to males (26.31 versus 21.09 per 100,000), slightly higher Blacks compared to Whites (23.88 versus 23.83 per 100,000), and higher in non-Hispanics (of any race) compared to Hispanics (24.23 versus 21.48 per 100,000).

  • The average annual age-adjusted incidence rate of primary malignant brain and other CNS tumors was 7.08 per 100,000.

  • The average annual age-adjusted incidence rate of primary non-malignant brain and other CNS tumors was 16.71 per 100,000.

  • Approximately 29.7% of all primary brain and other CNS tumors were malignant and 70.3% were non-malignant, which makes non-malignant tumors more than twice as common as malignant tumors.

  • The most commonly occurring primary malignant brain and other CNS tumor was glioblastoma (14.5% of all tumors and 48.6% of malignant tumors), and the most common primary non-malignant tumor was meningioma (38.3% of all tumors and 54.5% of non-malignant tumors). Glioblastoma was more common in males, and meningioma was more common in females.

  • In children and adolescents (age 0-19 years), the incidence rate of primary malignant and non-malignant brain and other CNS tumors was 6.14 per 100,000 between 2013 and 2017. Incidence was higher in females compared to males (6.22 versus 6.07 per 100,000), Whites compared to Blacks (6.36 versus 4.83 per 100,000), and non-Hispanics compared to Hispanics (6.42 versus 5.26 per 100,000).

  • An estimated 83,830 new cases of primary malignant and non-malignant brain and other CNS tumors are expected to be diagnosed in the US in 2020. This includes an expected 24,970 primary malignant and 58,860 primary non-malignant tumors.

Mortality
  • There were 81,246 deaths attributed to primary malignant brain and other CNS tumors for the five-year period between 2013 and 2017. This represents an average annual mortality rate of 4.42 per 100,000, and an average of 16,249 deaths per year caused by primary malignant brain and other CNS tumors.

Survival
  • Median observed survival in primary malignant brain and other CNS tumors only was lowest for glioblastoma (8 months) and highest for malignant tumors of the pituitary (139 months, or approximately 11.5 years).

  • The five-year relative survival rate following diagnosis of a primary malignant brain and other CNS tumor was 36.0%. Survival following diagnosis with a primary malignant brain and other CNS tumor was highest in persons age 0-14 years (75.4%), compared to those ages 15-39 years (72.5%) or 40+ years (21.5 %).

  • The five-year relative survival rate following diagnosis of a primary non-malignant brain and other CNS tumor was 91.7%. Survival following diagnosis with a primary non-malignant brain and other CNS tumor was highest in persons age 15-39 years (98.2%), compared to those ages 0-14 years (97.3%) or 40+ years (90.2%).

https://academic.oup.com/neuro-oncology/article/22/Supplement_1/iv1/5943281
--
Cancer Statistics, 2020: Brain and other nervous system cancer incidence and death rates
Death rates for brain & other nervous system cancers increased over past decade.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians. doi: 10.3322/caac.21590. Open access paper: https://acsjournals.onlinelibrary.wiley.com/doi/full/10.3322/caac.21590
Brain & ONS cancer incidence
The American Cancer Society estimates there will be 23,890 new cases of brain & other nervous system (ONS) cancers this year in the U.S., and 18,020 people will die from these cancers (see Table 1).
Leukemia is the most common cancer in childhood (birth to 19 years of age), accounting for 28% of cases, followed by brain & ONS tumors (26%), greater than one-quarter of which are benign or borderline malignant (see Table 12).
In adolescents 15 to 19 years of age, brain & ONS cancers are most the common tumor (21%), greater than one-half of which are benign or borderline malignant, followed closely by lymphoma (20%). (p. 18)
Brain & ONS cancer deaths
Death rates increased over the past decade for brain & ONS cancers. (p. 13)
Brain & ONS cancers are the leading cause of cancer death among men aged younger than 40 years and women aged younger than 20 years. These cancers are the fourth leading cause of cancer death among women aged 20 to 39 years and the fifth leading cause of cancer death among men aged 40 to 59 years (see Table 8).
Excerpts
"Brain and other CNS tumors (both malignant and non-malignant) were the most common cancer site in persons age 0-14 years, with an AAAIR of 5.83 per 100,000 population. Brain and other CNS tumors were the most common cancer in both males and females in this age group."

"Brain and other CNS tumors (both malignant and non-malignant) among those age 15-39 years had an AAAIR of 11.54 per 100,000 population. These tumors were the 3rd most common cancer overall, the 2nd most common cancer in males in this age group, and the 3rd most common cancer in females in this age group."
"The incidence rates for all primary brain and other CNS tumors, 2013-2017, did not differ substantially by year (both overall and by behavior)."
"For malignant tumors, frontal (24.3%), temporal (17.5%), parietal (10.4%), and occipital (2.6%) accounted for 54.8% of tumors (Fig. 7).
The most common of all malignant CNS tumors was glioblastoma (48.6%).
For non-malignant tumors, 53.9% of all tumors occurred in the meninges (Fig. 9C).

The most common histology among non-malignant tumors was meningioma (53.9%).
The most common non-malignant nerve sheath tumor (based on multiple sites in the brain and other CNS) was schwannoma (defined by histology code 9560). These tumors can occur in many sites (Supplementary Figure 6), but most commonly occur on the acoustic nerve, where they are called vestibular schwannoma (also formerly called acoustic neuromas) (74.7% of all nerve sheath tumors)."
"Glioblastoma accounted for the majority of gliomas (57.7%)."
"From birth, a person in the US has a 0.62% chance of ever being diagnosed with a primary malignant brain and other CNS tumor (excluding lymphomas, leukemias, tumors of the pituitary and pineal glands, and olfactory tumors of the nasal cavity) and a 0.48% chance of dying from a primary malignant brain/other CNS tumor."

--

Brain Cancer Increased in the U.S. from 2001-2014 among Youth 0-19 Years of Age
Overview. According to the Centers for Disease Control and Prevention, overall cancer incidence increased among individuals less than 20 years of age in the U.S. from 2001–2014. The incidence of brain cancer, thyroid cancer and lymphoma increased during this period. Central nervous system neoplasms which primarily consist of brain cancers increased 0.4 per cent per year on average across these years. Thyroid cancer increased 4.8% per year on average. In 2014, leukemia was the only cancer more common than brain cancer in young people.


Siegel D, Li J, Henley SJ, Wilson R, Lunsford RB, Tai E, Van Dyne E. Incidence Rates and Trends of Pediatric Cancer United States 2001–2014. Poster presentation at the American Society of Pediatric Hematology/Oncology Conference, Pittsburgh, PA. May 2-5, 2018.
Centers for Disease Control and Prevention, Atlanta, Georgia, United States
Background: Cancer is one of the leading disease-related causes of death among individuals aged <20 years in the United States. Recent evaluations of national trends of pediatric cancer used data from before 2010, or covered ≤28% of the US population.
Objectives: This study describes pediatric cancer incidence rates and trends by using the most recent and comprehensive cancer registry data available in the US.
Design/Method: Data from US Cancer Statistics were used to evaluate cancer incidence rates and trends among individuals aged <20 years during 2001–2014. Data were from 48 states and covered 98% of the US population. We assessed trends by calculating average annual percent change (AAPC) in rates using joinpoint regression. Rates and trends were stratified by sex, age, race/ethnicity, US Census region, county-based economic status, and county-based rural/urban classification, and cancer type, as grouped by the International Classification of Childhood Cancer (ICCC).
Results: We identified 196,200 cases of pediatric cancer during 2001–2014. The overall cancer incidence rate was 173.0 per 1 million; incidence rates were highest for leukemia (45.6), brain tumors (30.8), and lymphoma (26.0). Rates were highest among males, aged 0–4 years, non-Hispanic whites, the Northeast US Census region, the top 25% of counties by economic status, and metropolitan counties. The overall pediatric cancer incidence rate increased (AAPC=0.7, 95% CI, 0.5–0.8) during 2001–2014 and contained no joinpoints. Rates increased in each stratum of sex, age, race/ethnicity (except non-Hispanic American Indian/Alaska Native), region, economic status, and rural/urban classification.
Rates were stable for most individual cancer types, but increased for non-Hodgkin lymphomas except Burkitt lymphoma (ICCC group II(b), AAPC=1.2, 95% CI, 0.4–2.0), central nervous system neoplasms (group III, AAPC=0.4, 95% CI, 0.1–0.8), renal tumors (group VI, AAPC=0.6, 95% CI, 0.1–1.1), hepatic tumors (group VII, AAPC=2.5, 95% CI, 1.0–4.0), and thyroid carcinomas (group XI(b), AAPC=4.8, 95% CI, 4.2–5.5). Rates of malignant melanoma decreased (group XI (d), AAPC=-2.6, 95% CI, -4.7– -0.4).
Conclusion: This study documents increased rates of pediatric cancer during 2001–2014, in each of the demographic variables examined. Increased overall rates of hepatic cancer and decreased rates of melanoma are novel findings using data since 2010. Next steps in addressing changing rates could include investigation of diagnostic and reporting standards, host biologic factors, environmental exposures, or potential interventions for reducing cancer risk. Increasing pediatric cancer incidence rates may necessitate changes related to treatment and survivorship care capacity.
https://aspho.org/uploads/meetings/2018annualmeeting/Abstracts_for_Website.pdf

Incidence Rates and Trends of Pediatric Cancer — United States, 2001–2014
  • Childhood cancer varies geographically. This research may help states assess their needs in order to make sure that cancer patients have access to high quality cancer treatment and long-term care to monitor for side effects of their treatment after they have completed therapy.
  • Overall, we found a slight increase in pediatric cancer from 2001 to 2014. Cancer was increasing for lymphoma, thyroid, brain, kidney, and liver cancer and was decreasing for melanoma. This study could help researchers more effectively study why pediatric cancer is increasing or decreasing and why certain groups of children and adolescents are more affected.
https://www.cdc.gov/eis/conference/dpk/Incidence-Rates-Pediatric-Cancer.html
--
Comparative Study of Brain & Central Nervous System Tumor Incidence between the U.S. and Taiwan
Chien LN, Gittleman H, Ostrom QT, Hung KS, Sloan AE, Hsieh YC, Kruchko C, Rogers LR, Wang YF, Chiou HY, Barnholtz-Sloan JS. Comparative Brain and Central Nervous System Tumor Incidence and Survival between the United States and Taiwan Based on Population-Based Registry. Front Public Health. 2016 Jul 21;4:151.
Abstract


PURPOSE: Reasons for worldwide variability in the burden of primary malignant brain and central nervous system (CNS) tumors remain unclear. This study compares the incidence and survival of malignant brain and CNS tumors by selected histologic types between the United States (US) and Taiwan.

METHODS: Data from 2002 to 2010 were selected from two population-based cancer registries for primary malignant brain and CNS tumors: theCentral Brain Tumor Registry of the United States and the Taiwan Cancer Registry. Two registries had similar process of collecting patients with malignant brain tumor, and the quality of two registries was comparative. The age-adjusted incidence rate (IR), IR ratio, and survival by histological types, age, and gender were used to study regional differences.

RESULTS: The overall age-adjusted IRs were 5.91 per 100,000 in the US and 2.68 per 100,000 in Taiwan. The most common histologic type for both countries was glioblastoma (GBM) with a 12.9% higher proportion in the US than in Taiwan. GBM had the lowest survival rate of any histology in both countries (US 1-year survival rate = 37.5%; Taiwan 1-year survival rate = 50.3%). The second largest group was astrocytoma, excluding GBM and anaplastic astrocytoma, with the distribution being slightly higher in Taiwan than in the US.

CONCLUSION: Our findings revealed differences by histological type and grade of primary malignant brain and CNS tumors between two sites.

Open access paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4954825/


Excerpts

Between 2002 and 2010, there were 183,740 newly diagnosed cases of malignant brain and CNS tumors in the US and 5,855 in Taiwan.

The most common histologic group for both countries was GBM; 47.8% of all tumors in the US and 34.9% of all tumors in Taiwan (Figure 3).

The IR of GBM was 2.9 times in the US (2.48 per 100,000) as compared with Taiwan (0.85 per 100,000). The second highest histologic group was astrocytoma (excluding GBM and AA) in both the US (0.95 per 100,000) and Taiwan (0.44 per 100,000).

In the US, the IRs by primary site were highest for tumors located in the frontal lobe (1.34 per 100,000), followed by tumors located in all other sites within the brain, temporal lobe, parietal lobe, and the other parts of brain and CNS. In Taiwan, the IRs were highest for tumors located in all other parts of the brain (0.70 per 100,000), followed by tumors located in the frontal lobe, temporal lobe, and cerebrum.

In this study, the lower age-adjusted IRs of malignant brain and CNS tumors in Taiwan was less likely due to differences in imaging diagnostic techniques as the standards for imaging for brain and CNS tumors was the same in both countries.


--

Adolescent and Young Adult Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012

Ostrom QT, Gittleman H, de Blank PM, Finlay JL, Gurney JG, McKean-Cowdin R, Stearns DS, Wolff JE, Liu M, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS. American Brain Tumor Association Adolescent and Young Adult Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol. 2016 Jan;18 Suppl 1:i1-i50. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690545/


The incidence of the most common non-malignant tumors (e.g., meningioma, pituitary) has increased in recent years among adolescents and young adults (AYA) in the U.S; however, some of this increase may be due to better reporting over time.
"Collection of data on non-malignant brain and CNS tumors began in 2004, after the passage of the Benign Brain Tumor Act in 2002. Previous analyses have suggested that increased incidence in the time period between 2004 and 2006 may be the result of the initiation of this collection rather than a 'true' increase in incidence."
  • "Incidence of oligodendroglioma (APC = 22.9) and anaplastic oligodendroglioma (APC = 24.1) in AYA has significantly decreased from 2004-2012.
  • Incidence of tumors of the meninges in AYA has significantly increased from 2004-2012 (APC = 2.5), which is largely driven by the increase of meningioma incidence during that time (APC = 2.6).
  • Incidence of lymphomas and hematopoietic neoplasms has significantly decreased from 2004-2012 (APC = 22.8) in AYA.
  • Incidence of tumors of the sellar region in AYA has significantly increased from 2004-2008 (APC = 8.5), which is largely driven by the increase of tumors of the pituitary incidence from 2004-2009 (APC = 7.6).
  • Incidence of unclassified tumors in AYA has significantly increased from 2004-2012 (APC = 5.5), which is largely driven by the increase of hemangioma incidence from 2004-2010 (APC = 18.8)."
--

Malignant Brain Tumors Most Common Cause of Cancer Deaths in Adolescents & Young Adults

Press Release, American Brain Tumor Association, Feb 24, 2016

A new report published in the journal Neuro-Oncology and funded by the American Brain Tumor Association (ABTA) finds that malignant brain tumors are the most common cause of cancer-related deaths in adolescents and young adults aged 15-39 and the most common cancer occurring among 15-19 year olds.

The 50-page report, which utilized data from the Central Brain Tumor Registry of the United States (CBTRUS) from 2008-2012, is the first in-depth statistical analysis of brain and central nervous system (CNS) tumors in adolescents and young adults (AYA). Statistics are provided on tumor type, tumor location and age group (15-19, 20-24, 25-29, 30-34 and 35-39) for both malignant and non-malignant brain and CNS tumors.

"When analyzing data in 5-year age increments, researchers discovered that the adolescent and young adult population is not one group but rather several distinct groups that are impacted by very different tumor types as they move into adulthood," said Elizabeth Wilson, president and CEO of the American Brain Tumor Association.

"For these individuals -- who are finishing school, pursuing their careers and starting and raising young families -- a brain tumor diagnosis is especially cruel and disruptive," added Wilson. "This report enables us for the first time to zero-in on the types of tumors occurring at key intervals over a 25-year time span to help guide critical research investments and strategies for living with a brain tumor that reflect the patient's unique needs."

Although brain and CNS tumors are the most common type of cancer among people aged 15-19, the report shows how other cancers become more common with age. By ages 34-39 years, brain and CNS tumors are the third most common cancer after breast and thyroid cancer.

"What's interesting is the wide variability in the types of brain tumors diagnosed within this age group which paints a much different picture than what we see in adults or in pediatric patients," explained the study's senior author Jill Barnholtz-Sloan, Ph.D., associate professor, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine and Scientific Principal Investigator for CBTRUS.

"For example, the most common tumor types observed in adults are meningiomas and glioblastomas, but there is much more diversity in the common tumor types observed in the adolescent and young adult population. You also clearly see a transition from predominantly non-malignant and low-grade tumors to predominantly high-grade tumors with increasing age," Barnholtz-Sloan said.

There are nearly 700,000 people in the U.S. living with brain and CNS tumors and approximately 15 percent of these tumors occurred in the AYA population during the 2008-2012 time frame analyzed in this report. Approximately 10,617 brain and CNS tumors are diagnosed among adolescents and young adults each year and are the cause of approximately 434 deaths annually.

"The American Brain Tumor Association's recognition of this understudied population, and their commitment to data and information sharing should be applauded," added Barnholtz-Sloan. "There are clearly unique characteristics of the 15-39 age group that we need to more comprehensively understand and the information in the ABTA report starts that important dialogue."

The full report is available at https://www.abta.org/about-us/news/brain-tumor-statistics/.

To learn more or access additional statistics, go to https://www.abta.org.

https://bit.ly/1OvDHYy

Brain Tumor Statistics
Brain tumors are the:
  • most common cancer among those age 0-19 (leukemia is the second).
  • second leading cause of cancer-related deaths in children (males and females) under age 20 (leukemia is the first).
  • Nearly 78,000 new cases of primary brain tumors are expected to be diagnosed this year. This figure includes nearly 25,000 primary malignant and 53,000 non-malignant brain tumors.
  • It is estimated that more than 4,600 children between the ages of 0-19 will be diagnosed with a primary brain tumor this year.
  • There are nearly 700,000 people in the U.S. living with a primary brain and central nervous system tumor.
  • This year, nearly 17,000 people will lose their battle with a primary malignant and central nervous system brain tumor.
  • There are more than 100 histologically distinct types of primary brain and central nervous system tumors.
  • Survival after diagnosis with a primary brain tumor varies significantly by age, histology, molecular markers and tumor behavior.
  • The median age at diagnosis for all primary brain tumors is 59 years.
Tumor-Specific Statistics:
  • Meningiomas represent 36.4% of all primary brain tumors, making them the most common primary brain tumor. There will be an estimated 24,880 new cases in 2016.
  • Gliomas, a broad term which includes all tumors arising from the gluey or supportive tissue of the brain, represent 27% of all brain tumors and 80% of all malignant tumors.
  • Glioblastomas represent 15.1% of all primary brain tumors, and 55.1% of all gliomas.
  • Glioblastoma has the highest number of cases of all malignant tumors, with an estimated 12,120 new cases predicted in 2016.
  • Astrocytomas, including glioblastoma, represent approximately 75% of all gliomas.
  • Nerve sheath tumors (such as acoustic neuromas) represent about 8% of all primary brain tumors.
  • Pituitary tumors represent 15.5% of all primary brain tumors. There will be an estimated 11,700 new cases of pituitary tumors in 2016.
  • Lymphomas represent 2% of all primary brain tumors.
  • Oligodendrogliomas represent nearly 2% of all primary brain tumors.
  • Medulloblastomas/embryonal/primitive tumors represent 1% of all primary brain tumors.
  • The majority of primary tumors (36.4%) are located within the meninges.
https://www.abta.org/about-us/news/brain-tumor-statistics/

--

Central Brain Tumor Registry of the United States: 2018 Fact Sheet

One in 161 Americans (0.62%) will be diagnosed with brain or other central nervous system (CNS) cancer (i.e., malignant tumors) during their lifetime according to the Central Brain Tumor Registry of the United States.

Excerpts
The incidence rate of all primary malignant and non-malignant brain and CNS tumors is 23.03 cases per 100,000 for a total count of 392,982 incident tumors; (7.12 per 100,000 for malignant tumors for a total count of 121,277 incident tumors and 15.91 per 100,000 for non-malignant tumors for a total count of 271,105 incident tumors). The rate is higher in females (25.31 per 100,000 for a total count of 227,834 incident tumors) than in males (20.59 per 100,000 for a total count of 164,148 incident tumors).

An estimated 86,970 new cases of primary malignant and non-malignant brain and CNS tumors are expected to be diagnosed in the United States in 2019. This includes an estimated 26,170 primary malignant and 60,800 non-malignant tumors expected to be diagnosed in the US in 2019.

Pediatric Incidence (Ages 0-14 Years)
The incidence rate of childhood primary malignant and non-malignant brain and CNS tumors in the US is 5.65 cases per 100,000 for a total 5-year count of 17,273 incident tumors. The rate is higher in males (5.84 per 100,000) than females (5.45 per 100,000).

An estimated 3,720 new cases of childhood primary malignant and non-malignant brain and CNS tumors are expected to be diagnosed in the US in 2019.
Adolescent & Young Adult (AYA) Incidence (Ages 15-39 Years)
The incidence rate of AYA primary malignant and non-malignant brain and CNS tumors is 11.2 cases per 100,000 for a total 5-year count of 57,821 incident tumors.1 The rate is higher for non-malignant tumors (7.94 per 100,000) than malignant tumors (3.26 per 100,000).

An estimated 12,290 new cases of AYA primary malignant and non-malignant brain and CNS tumors are expected to be diagnosed in the US in 2019.
Mortality
The average annual mortality rate in the US between 2011 and 2015 was 4.37 per 100,000 with 77,375 deaths attributed to primary malignant brain and CNS tumors.

An estimated 16,830 deaths will be attributed to primary malignant brain and CNS tumors in the US in 2019.
Lifetime Risk
From birth, a person in the US has a 0.62% chance of ever being diagnosed with a primary malignant brain/CNS tumor (excluding lymphomas, leukemias, tumors of pituitary and pineal glands, and olfactory tumors of the nasal cavity) and a 0.47% chance of dying from the primary malignant brain/CNS tumor.

For males in the US, the risk of developing a primary malignant brain/CNS tumor is 0.70%, and the risk of dying from a primary malignant brain/CNS tumor (excluding lymphomas, leukemias, tumors of pituitary and pineal glands, and olfactory tumors of the nasal cavity) is 0.53%.

For females in the US, the risk of developing a primary malignant brain/CNS tumor is 0.54%, and the risk of dying from a primary malignant brain/CNS tumor (excluding lymphomas, leukemias, tumors of pituitary and pineal glands, and olfactory tumors of the nasal cavity) is 0.41%.
Prevalence
The prevalence rate for all malignant primary brain and CNS tumors was estimated to be 47.60 per 100,000. It was estimated that more than 103,634 persons were living with a diagnosis of malignant primary brain and central nervous system tumor in the United States in 2010.
The prevalence rate for all pediatric (ages 0-19) malignant primary brain and central nervous system tumors was estimated at 22.31 per 100,000 with more than 13,657 children estimated to be living with this diagnosis in the United States in 2004.

Note
Estimated numbers of incidence of malignant and non-malignant brain and CNS tumors and deaths due to these tumors were calculated for 2015 and 2016 using age-adjusted annual tumor incidence rates generated for 2000-2012 for non-malignant tumors by state, age, and histologic type.
https://www.cbtrus.org/www.cbtrus.org/factsheet/factsheet.html
--

Brain Tumors in Children and Adolescents

According to a recent study, there has been a significant increase in the incidence of primary malignant brain and central nervous system (CNS) tumors in American children (0-14 years of age) between 2000-2010, with an annual percentage change (APC) of 0.6%. In adolescents (15-19 years old), there was a significant increase in the incidence of primary malignant brain and CNS tumors between 2000-2008, with an APC of 1.0%. Adolescents also experienced an increase in non-malignant brain and CNS tumors from 2004-2010, with an APC of 3.9%.

The four-nation CEFALO case-control study found a 36% increased risk of brain tumors among children and adolescents 7-19 years of age who used mobile phones at least once a week for six months. Since this risk estimate was not statistically significant (OR = 1.36; 95% CI = 0.92 to 2.02), the authors dismissed this overall finding. However, in a subsample of 556 youth for whom cell phone company records were available, there was a significant association between the time since first mobile phone subscription and brain tumor risk. Children who used cellphones for 2.8 or more years were twice as likely to have a brain tumor than those who never regularly used cellphones (OR = 2.15, 95% CI = 1.07 to 4.29).

--

Trends in Incidence of Non-Malignant Head and Neck Tumors in the U.S.

The likelihood of developing a non-malignant brain tumor has increased in recent years in the U.S. According to newly-released data from the Centers for Disease Control and Prevention (CDC), the overall age-adjusted incidence (per 100,000 persons) of non-malignant brain tumors significantly increased from 2004 through 2012. The increase was observed among children 0-19 years of age (1.7 in 2004; 2.3 in 2012) and among adults 20 years and older (15.9 in 2004; 19.7 in 2012).

Almost 200 people per day in the U.S. were diagnosed with brain tumors in 2012 including 67,612 adults and 4,615 children. Among adults, 70% of these tumors were nonmalignant, and among children, 42% were nonmalignant.
The overall incidence of malignant tumors in the U.S. has been stable for children (3.4 in 2004; 3.3 in 2012) and has slightly decreased for adults (9.1 in 2004; 8.4 in 2012). However, lags in reporting to tumor registries are common in the U.S. so official statistics may underestimate the actual incidence of tumors for more recent years (see August 5, 2015 post below).

A peer-reviewed study reported a significant Increase over time in the incidence of specific types of malignant brain tumors among adults in the U.S. (see May 7, 2015 post below).

The age-adjusted incidence of the most common non-malignant tumor, meningioma, significantly increased among adults from 2004 through 2012 (8.7 in 2004; 10.6 in 2012).

A recent study reported a significant increase in meningioma incidence for the period 2004 through 2009 (Dolecek et al., 2015). Several case-control studies have found a significant association between risk of meningioma and wireless phone use (see May 7, 2015 post below).

The age-adjusted incidence of pituitary gland tumors significantly increased among children (0.4 in 2004; 0.6 in 2012) and among adults (3.4 in 2004; 4.7 in 2012).

A prospective study of 790,000 women in the United Kingdom reported that the risk pituitary gland tumors was more than twice as high among women who used a cell phone for less than five years as compared to never users (Benson et al., 2013).

The web-based report, United States Cancer Statistics: 1999-2012 Incidence and Mortality Web-based Report (USCS) is available at www.cdc.gov/uscs. Although the report includes cancer cases diagnosed (incidence) from 1999 through 2012, brain tumor incidence data are available only since 2004. In 2012, cancer incidence information came from central cancer registries in 49 states, 6 metropolitan areas, and the District of Columbia, covering 99% of the U.S. population.
The Interactive Cancer Atlas (InCA), with exportable data, shows how rates differ by state and change over time. InCA is available at https://nccd.cdc.gov/DCPC_INCA/.
--

Limitations of Cancer Registries

Cancer registries are developed to collect data on malignant tumors and often do not collect data on non-malignant (sometimes called benign) tumors. Since about half of primary brain tumors are non-malignant, these tumors may not be monitored by public health surveillance systems (e.g., Canada).

The U.S has a Central Brain Tumor Registry (CBTRUS): "a resource for gathering and disseminating current epidemiologic data on all primary brain tumors, benign and malignant, for the purposes of accurately describing their incidence and survival patterns, evaluating diagnosis and treatment, facilitating etiologic studies, establishing awareness of the disease, and ultimately, for the prevention of all brain tumors." However, "CBTRUS makes no representations or warranties, and gives no other assurances or guarantees, express or implied, with respect to the accuracy or completeness of the data presented."
There is a good reason for the disclaimer on the CBTRUS home page. Tumor registries are useful in monitoring disease incidence only to the extent that all procedures are well implemented. Registries are highly dependent upon reporting agencies (e.g., hospitals) to do an accurate and complete job in reporting tumors to the registry.
Registry data typically suffer from various problems:
"Users must be aware of diverse issues that influence collection and interpretation of cancer registry data, such as multiple cancer diagnoses, duplicate reports, reporting delays, misclassification of race/ethnicity, and pitfalls in estimations of cancer incidence rates." (Izqierdo, JN, Schoenbach, VJ. The potential and limitations of data from population-based state cancer registries. Am J Public Health. 2000;90:695-698. URL:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1446235/)
Delays in reporting and late ascertainment are a reality and a known issue influencing registry completeness and, consequently, rate underestimations occur, especially for the most recent years.22 CBTRUS also recognizes that the problem may be even more likely to occur in the reporting of non-malignant brain and CNS tumors, where reporting often comes from non-hospital based sources and mandated collection is relatively recent (2004). Ostrom et al. (2014). URL:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193675/).
For a discussion of the factors that undermine the data quality and completeness of cancer registry coverage of diagnosed tumors see Bray et al (2015), Coebergh et al (2015), and Siesling et al (2015).

The shortcomings of cancer registries are not just hypothetical. For example, Hardell and Carlberg (2015) recently reported that brain cancer rates have been increasing in Sweden based upon the Swedish National Inpatient Registry but not according to the Swedish Cancer Registry. Based upon their results they "postulate(d) that a large part of brain tumours of unknown type are never reported to the Cancer Register ... We conclude that the Swedish Cancer Register is not reliable ..."

Electromagnetic Radiation Safety
1.2.2024 20:54

The Incidence of Meningioma, a Non-Malignant Brain Tumor, is Increasing in the U.S.




In the U.S. nonmalignant meningioma, a non-malignant tumor on the outer covering of the brain, is the most common brain tumor.
Since the year 2000, the U.S. has experienced significant increases in the age-adjusted incidence rates of meningioma along with three other head and neck tumors.
Whereas the size of the population in the U.S. increased 16% between 2000 and 2019, the number of cases reported in the National Cancer Institute's SEER 22 registry for this tumor increased 124%.
The overall age-adjusted incidence rate for nonmalignant meningioma of the brain and nervous system significantly increased 70% in the U.S. from 2004 (6.46 per 100,000) to 2019 (11.01 per 100,000). From 2004 to 2008, the increase was 12.3% per year, and from 2008 to 2019, the increase was 2.1% per year.
Among youth less than 20 years of age the incidence of nonmalignant meningioma significantly increased by 2.8% per year from 2004 to 2019.
The increase in age-adjusted incidence rate for this tumor is likely attributable to the chronic effects of mobile phone use in addition to other factors including improvements in screening. The incidence of this tumor was not reported to the SEER registry prior to 2004.
The tumor incidence rate data are from the SEER 22 Registry which covers 48% of the total U.S. population. The data were age-adjusted to the population in the year 2000 so observed differences over time are not affected by changes in the age composition of the population.



https://seer.cancer.gov/statistics-network/explorer/application.html?site=501&data_type=1&graph_type=2&compareBy=age_range&chk_age_range_1=1&chk_age_range_16=16&chk_age_range_62=62&chk_age_range_122=122&chk_age_range_160=160&chk_age_range_166=166&chk_age_range_15=15&hdn_rate_type=1&sex=1&race=1&hdn_stage=101&advopt_precision=2&advopt_show_ci=on&hdn_view=1&advopt_show_apc=on&advopt_display=2#resultsRegion1
Reference: SEER*Explorer: An interactive website for SEER cancer statistics [Internet]. Surveillance Research Program, National Cancer Institute; 2023 Apr 19. [updated: 2023 Nov 16; cited 2024 Jan 9]. Available from: https://seer.cancer.gov/statistics-network/explorer/. Data source(s): SEER Incidence Data, November 2022 Submission (1975-2020), SEER 22 registries.
--
March 15, 2023
https://bit.ly/3Tjzxxx

March 15, 2023 (Updated March 18, 2023)
It is tricky trying to interpret the results of ecological studies (studies used to understand the relationship between outcome and exposure at a population level, where 'population' represents a group of individuals with a shared characteristic):
(1) it is difficult to control for confounding, (2) associations may be due to chance, and (3) population-level associations may not correspond to processes that occur at the individual-level (i.e., ecological fallacy).
The risk factors underlying changes over time in tumor incidence in the population can be difficult to identify if there were changes in screening and diagnostic procedures or changes in reporting practices.
Moon (2023) recently reported that the age-standardized incidence rate of nonmalignant meningioma (D32) increased from 1999 to 2018 [Average Annual Percent Change =36.69% (95% CI = 33.53–39.85)] in South Korea. The rate increased from 2.08 per 100,000 in 2004 to 7.07 per 100,000 in 2018 (see Supplementary Material B).
Keeping the caveats mentioned above in mind about ecological studies, it is intriguing that Moon (2023) reported that the correlation of the age-standardized incidence rate of nonmalignant meningioma with the cell phone subscription rate ten years earlier in South Korea was very high (r = .92, 95% CI = .80 - .97). This result suggests that cell phone use in the population could be contributing to the development of nonmalignant tumors of the meninges, the tissue covering the outer portion of the brain, ten years later.

In the U.S., based on SEER 22 Areas tumor registry data, the age-standardized incidence rate of nonmalignant meningioma increased from 6.4 per 100,000 in 2004 (the first year this tumor was reported by SEER) to 10.1 per 100,000 in 2018 (see Figure above).
Based upon my calculation, in the U.S. the correlation of age-standardized incidence rates of nonmalignant meningioma (from 2004-2018 in SEER 22) with cell phone subscription rates in the U.S. ten years earlier (from 1994-2008 as reported in Supplementary Material B in Moon, 2023) was also very high (r=.89, 95% CI =.70 - .96).
Case-control studies provide stronger evidence of this risk factor. Although not all case-control studies have found an association between heavy wireless phone use and meningioma, at least three studies reported significant associations:

In Sweden, Carlberg and Hardell (2015) found that heavy use of wireless phones (i.e., cell phones and cordless phones) was associated with greater risk of meningioma. Heavy cordless phone users (defined as more than 1,436 hours of lifetime use) had a 1.7-fold greater risk of meningioma (OR = 1.7; 95% CI = 1.3-2.2). The heaviest cordless phone users (defined as more than 3,358 hours of lifetime use) had a two-fold greater risk of meningioma (OR = 2.0; 95% CI = 1.4 - 2.8). The heaviest cell phone users had a 1.5-fold greater risk of meningioma (OR = 1.5, 95% CI = 0.99 - 2.1).

In France, Coureau et al. (2014) found a two and a half-fold greater risk of meningioma for heavy cell phone users (defined as 896 or more hours of lifetime use) (OR = 2.57; 95% CI = 1.02 to 6.44).

Using data from Australia, Canada, France, Israel and New Zealand, Cardis et al. (2011) found a two-fold greater risk of meningioma for heavy cell phone users (defined as 3,124 or more hours of lifetime use) (OR = 2.01; 95% CI = 1.03 to 2.93).

In sum, use of wireless phones over a ten-year period, including cell phone and cordless phone use, may contribute to the development of nonmalignant meningioma in the U.S. as well as other countries.
See also:
Brain Tumor Rates Are Rising in the US: The Role of Cellphone & Cordless Phone Use
Trends in Brain Tumor Incidence Outside the U.S.


April 20, 2015
The age-adjusted incidence rate for meningioma, the most common non-malignant brain tumor, increased from about 6.3 per 100,000 in 2004 to about 7.8 per 100,000 in 2009 before leveling off (through 2011).

The annual percentage increase between 2004 and 2009 was 2.4% per year. The annual increase was significant for males and females, whites and blacks, and non-Hispanics. Although the incidence of these tumors increased for all age groups except 0-19, the increase was statistically significant only for 45-54 years of age and 65 and older.

The case-control research that has examined the association between long-term use of mobile phones and risk of meningioma has yielded mixed results. Some studies have found a significant association whereas others have not.

---

Dolecek TA, Dressler EV, Thakkar JP, Liu M, Al-Qaisi A, Villano JL. Epidemiology of meningiomas post-Public Law 107-206: The Benign Brain Tumor Cancer Registries Amendment Act. Cancer. 2015 Apr 14. doi: 10.1002/cncr.29379. [Epub ahead of print]

Abstract


BACKGROUND: The current analysis follows the implementation of Public Law 107-260, the Benign Brain Tumor Cancer Registries Amendment Act, which mandated the collection of nonmalignant brain tumors.

METHODS: Meningiomas were selected from the Surveillance, Epidemiology, and End Results (SEER) Program database for the years 2004 to 2011. Demographic and clinical characteristics, initial treatment patterns, and survival outcomes were evaluated using surveillance epidemiology statistical methods.

RESULTS: The average annual age-adjusted incidence rate per 100,000 population was 7.62 (95 % confidence interval [CI], 7.55-7.68) for all meningiomas, 7.18 (95% CI, 7.12-7.25) for benign meningiomas, 0.32 (95% CI, 0.31-0.33) for borderline malignant meningiomas, and 0.12 (95% CI, 0.11-0.12) for malignant meningiomas. The annual rates increased for benign and borderline malignant tumors but decreased for malignant tumors. The rates for women exceeded those for men, especially for those with benign meningiomas. Black race was associated with significantly higher rates as was advancing age. Greater than 80% of tumors were located in cerebral meninges. Diagnostic confirmation through pathology occurred for approximately 50% of benign tumors, 90% of borderline malignant tumors, and 80% of malignant tumors. No initial treatment was reported for greater than 60% of benign tumors, 29% of borderline malignant tumors, or 31% of malignant tumors. The 5-year relative survival estimates for benign tumors, borderline malignant tumors, and malignant tumors were 85.6% (95% confidence interval [CI], 85%-86.2%), 82.3% (95% CI, 79.3%-84.8%), and 66% (95% CI, 60.6%-70.9%), respectively. Predictors of poorer survival were advanced age, being male gender, black race, no initial treatment, and malignant tumor behavior.

CONCLUSIONS: The current analysis demonstrates that there is an increasing incidence.

https://1.usa.gov/1zE7WXs

Excerpts

Population-based studies of meningiomas have been limited because of the benign nature of the histology; and, before diagnosis year 2004, state central cancer registries were not required to collect nonmalignant cases. That changed with the passage of Public Law 107-260, the Benign Brain Tumor Cancer Registries Amendment Act.1 This law mandated the collection of benign and borderline malignant brain tumors beginning with diagnosis year 2004. Our analysis on this common but understudied tumor follows the implementation of this law ...

Meningiomas have the highest incidence rate among all primary brain and central nervous system (CNS) tumors. Nonmalignant meningioma is the most frequently reported histology, accounting for >33% of all primary brain and CNS tumors.

We evaluated population-based data from the Surveillance, Epidemiology, and End Results (SEER) Program 18 registries of the National Cancer Institute. The SEER Program is an authoritative source of cancer incidence and survival in the United States with registries that cover approximately 28% of the US population. Although Public Law 107-260 only applies to state-wide registries, SEER has voluntarily agreed to collect nonmalignant brain tumor data in accordance with the mandate.

In total, 51,065 new meningiomas occurred in the 18 SEER geographic areas during the period from 2004 to 2011. Of these tumors, 50,290 (>98%) were determined to be nonmalignant (benign or borderline malignant) and were collected under the mandate of Public Law 107-260. Greater than 95% of these tumors were benign, and the remaining tumors were classified as borderline malignancies. Only 775 malignant tumors were diagnosed during the 8 study years.

... Statistically significant increases in the annual AAIRs from 2004 to 2011 were apparent for benign and borderline malignant tumors, whereas AAIRs for malignant tumors significantly decreased....

... Statistically significant increases were observed from 2004 to 2009 for benign meningiomas (APC, 3.86; P<.05), with a leveling off and no significant change in AAIRs during 2009 to 2011. The pattern for borderline malignant meningiomas was similar, but the significant increase appeared from 2004 to 2008 (APC, 5.50; P<.05), with no significant change over the years from 2008 to 2011. No joinpoint was apparent for malignant meningiomas, but a significant linear decline (APC, 27.27; P<.05) was observed.
Rising risk over the study period very well may have been an artifact of increasingly accurate reporting associated with implementation of the law. The extent to which this contributed to the increased incidence is unknown. There is also a degree of ascertainment bias because of improving diagnostic techniques, because 50% of patients with benign tumors were registered based on imaging versus pathology, which is required for most other cancers ...
The piece-wise regression trend analyses suggest that benign meningioma rates stabilized at diagnosis year 2009 and had no significant change from 2009 to 2011. Reporting for the diagnosis years 2004 through 2009 may have been influenced by the many factors discussed above, and diagnosis years 2009 through 2011 actually may reflect accurate incidence estimates for meningiomas with more complete registration of nonmalignant tumors ...

Conclusions

The implementation of the Benign Brain Tumor Cancer Registries Amendment Act, Public Law 107-260, afforded an opportunity to gain a better understanding and new insights into nonmalignant brain tumors. This legislative contribution has distinctive relevance to patients with meningioma, because it is known as the most common CNS tumor in which the vast major of patients present with benign histologies. Our current analysis after the implementation of Public Law 107-260 in diagnosis year 2004 demonstrates increasing incidence rates of nonmalignant meningiomas that stabilized around 2009. This trend was undoubtedly because of learning curves associated with registration procedures put into practice to comply with the law. The period of rate stabilization likely reflects meningioma estimates that are closer to its true incidence with more precise behavior classifications in the SEER registries data. Our report, for which we used this improved, high-quality cancer registry data set on brain tumors, represents the most current population-based description of the demographic and clinical characteristics, initial treatment patterns, and survival outcomes for patients with nonmalignant and malignant meningiomas.




сайт не использует куки, не шпионит, не следит
для использования сайта мы проверяем:
страна: US · город: Columbus · айпи: 3.147.104.120
устройство: computer · браузер: AppleWebKit 537 · платформы:
счетчик: 1 · online:
created and powered by:
RobiYogi.com - профессиональные адаптивные сайты
00:00
00:00
близко
 пожалуйста, подождите, пока идет загрузка данных...